关键词:补偿效应; 水分亏缺; 甜菜; 滴灌 Compensation Response of Drip-irrigated Sugar Beets ( Beta vulgarisL.) to Different Water Deficits during Storage Root Development LI Yang-Yang, FEI Cong, CUI Jing, WANG Kai-Yong, MA Fu-Yu*, FAN Hua* Agricultural College of Shihezi University / Key Laboratory of Oasis Ecol-Agriculture of Xinjiang Prodution and Construction Group, Shihezi 832000, China Fund:This work was supported by the National Natural Science Foundation of China (31260299), the Key Project of Chinese Ministry of Education (212201), Doctoral Program of Higher Education of Xinjiang Production and Construction Corps (2014BB012), the International Cooperation Project (2010DFA32520), and Training Program of Distinguished Young Scientists of Shihezi University (2015ZRKXJQ03) AbstractThe objective of this experiment was to investigate the compensation response of drip-irrigated sugar beets under drought stress and rewatering during storage root development. The experiment at treatments were field capacity of 70% (T1), 50% (T2), and 30% (T3). The yield, agronomic characteristics, and physical and chemical properties of the beet roots were measured. The sugar yield and technological sugar yield in T3 treatment were 51.7%, 17.6% and 48.7%, 7.7% more than those in T1 and T2 treatments, respectively. At one day after rewatering, electrical conductivity, proline content, POD activity were significantly greater in T2 and T3 treatments than in T3 treatment during storage root development. Principal component analysis showed that a regulation system consisted of membrance permeability, antioxidant enzyme activity, osmotic adjustment and agronomic characteristics resisting drought stress, among which soluble sugar content can not be used as an indicator of drought resistance indentification of sugar beet during the devevelopment of sugar beet storage roots. Therefore, supplemental irrigation should be carried out promptly when the soil water content drops to 30% of field capacity during storage root development, which is beneficial to increase the sugar content and do not affect the growth of sugar beet.
Keyword:Compensation effect; Water deficit; Sugar beet; drip irrigation Show Figures Show Figures
水分不足是干旱区农业生产的主要限制因子。大量研究表明, 植物对水分胁迫-复水的响应方式是在胁迫解除后存在短暂的快速生长, 以部分补偿胁迫造成的损失, 主要表现为根系生长及叶面积增大[1]。同时, 水分亏缺可造成细胞内活性氧增加[2, 3], 引发细胞膜脂过氧化, 导致细胞相对电导率和丙二醛含量上升。为应对于干旱诱导的氧化应激, 植物抗氧化酶活性增加[4]以清除过多的活性氧。此时可溶性碳水化合物和脯氨酸等渗透调节物质[5, 6]含量上升, 保持细胞膨压增加细胞膜的稳定性[7], 从而与保护酶系统共同维持细胞的正常功能[8, 9]。根据水分亏缺程度, 植物通常表现出超补偿、近等量补偿、适当恢复以及无恢复4种状况[10], 这在不同作物和作物不同生长阶段[11]各异, 主要与作物生理特性有关。 甜菜是直根系作物, 根系发达, 主根多且侧根数量也多。同时, 甜菜叶面的角质层较厚, 维管束和栅栏组织发达, 叶脉多而稠密, 具有忍受一定程度干旱胁迫的生理基础。本研究利用甜菜耐旱性强的特点, 选取对水分胁迫较敏感的块根膨大期, 结合滴灌可高精度控水的优点, 从形态学特性到生理响应的角度, 系统揭示块根膨大期缺水对甜菜生长的补偿效应, 以及产生补偿效应所需的土壤水分阈值, 为干旱区滴灌甜菜高产优质节水潜力的挖掘提供理论依据。 1 材料与方法1.1 试验地概况新疆石河子大学农学院实验站(45° 19′ N, 86° 03′ E), 海拔450.8 m, 年平均气温7.5~8.2℃, 日照时数2318~2732 h, 无霜期147~191 d, 年降雨量180~270 mm, 年蒸发量1000~1500 mm, 属典型的温带大陆性气候。试验区土壤为灌溉灰漠土, 质地为重壤, 耕层土壤含全氮0.89 g kg-1、速效磷0.022 g kg-1、速效钾0.249 g kg-1、碱解氮0.058 g kg-1、有机质13.25 g kg-1, pH 7.3。耕层土壤容重为1.6 g cm-3, 田间持水量为18% (质量含水量), 地下水埋深大于5 m。 1.2 试验设计2013年4月至10月和2014年4月至10月两年试验。试材为甜菜品种Beta356。在甜菜块根膨大期(出苗后70 d至出苗后105 d)设置70%田间持水量(T1)、50%田间持水量(T2)、30%田间持水量(T3) 3种土壤水分, 当测定的土壤含水量降到设定范围内即灌水至田间持水量。灌水量由灌水定额计算公式确定[12]。 m = 10ρ bH(β I - β j) 式中, m为灌水量(mm); ρ b为该时段土壤计划湿润层内土壤容重(g cm-3); H为计划湿润层深度(cm), 本试验计划湿润层深度为40 cm; β i为目标含水量(田间持水量乘以目标相对含水量); β j为灌前土壤含水量。灌水量由水表记录。灌水灌溉误差5% (占田间持水量的百分比)。 采用膜下滴灌的方式种植甜菜, 行距为50 cm, 株距为20 cm。滴灌带配置模式为“ 1管2” 模式, 即1条毛管控制2行甜菜。小区面积4 m × 12 m, 小区间设1 m隔离区, 随机区组排列, 3次重复。为了保证出苗, 在播种后均滴水至土壤饱和含水量, 于出苗后75 d通过控制灌水量开始处理, 出苗后110 d 块根膨大期结束。 1.3 测试项目与方法于块根膨大期每日上午9:00— 10:00用Watermark (Irrometer Company, Riverside, CA)张力计监测土壤墒情, 同时采用烘干法对Watermark读数校准。在甜菜株间、行间、走道间分别于20、40和60 cm处安装Watermark传感器, 测定值可以反映土壤含水量状况, 测定范围为0~ -2 bar (0 ~ -200 kPa), 0 bar表示土壤处于饱和含水量状态, -2 bar表示土壤极度干旱。块根膨大期每12 d破坏性取样测定甜菜干物质和叶面积, 共取样3次。收获期实收测产小区, 并选取20株测定块根含糖量。产糖量=单株产量× 含糖量× 公顷理论株数× 出苗率。 在各处理复水历时0、24、48和72 h时间段, 用剪刀剪取植株上部完全展开叶片, 一部分材料立刻带回实验室测定丙二醛(MDA)和电导率, 另一部分材料迅速用锡箔纸包裹放至液氮罐内, 用于过氧化物酶(POD)、过氧化氢酶(CAT)、脯氨酸(Pro)、可溶性糖的分析。采用硫代巴比妥酸法测MDA含量, 电导率仪法测电导率, 愈创木酚法测POD活性, 紫外吸收法测CAT活性, 磺基水杨酸法测Pro含量, 蒽酮比色法测可溶性糖[13, 14]。 补偿指数(Ci)指各指标在胁迫解除后与对照相比的恢复程度, 可反映甜菜补偿效应的大小。 Ci = (Xr- Xck)/Xck 式中, Xr为胁迫解除后指标实测值; Xck为对照相应指标实测值。若Ci为正值则存在补偿现象, 若Ci为负值则说明对于某项指标在胁迫解除后不存在补偿现象[15]。本试验以T1为对照, 计算T2、T3处理各农艺性状指标的补偿指数。 1.4 数据分析用SPSS12.0软件统计分析, 用单因素方差分析(one-way ANOVA)和最小显著差异法(LSD)比较不同数据组间的差异(P< 0.05)。
表2 不同水分条件下滴灌甜菜的农艺性状 Table 2 Major traits of sugar beet in three water conditions
性状 Trait
处理前 Before treatment
处理后 After treatment
补偿指数 CI
T1
T2
T3
T1
T2
T3
T2
T3
单株叶柄重 Petiole (g)
36.92± 4.28 b
38.02± 5.00 b
36.41± 5.97 b
55.83± 3.58 a
47.50± 2.95 ab
40.17± 2.43 b
-0.15
-0.28
单株块根重 Beet (kg)
0.15± 0.01 bc
0.15± 0.02 bc
0.14± 0.01 c
0.34± 0.03 a
0.30± 0.03 a
0.23± 0.04 b
-0.12
-0.32
含糖量Sugar content (%)
11.00± 0.28 c
11.20± 0.18 bc
11.70± 0.25 bc
11.87± 0.25 b
13.17± 0.26 a
13.91± 0.31 a
0.11
0.17
根冠比 Root/shoot
2.03± 0.09 b
1.87± 0.12 b
1.94± 0.13 b
2.90± 0.26 a
2.88± 0.30 a
2.78± 0.50 a
-0.01
-0.04
比叶重 LMA (g m-2)
87.09± 7.93 a
87.10± 9.82 a
105.25± 18.34 a
93.87± 3.89 a
85.29± 3.10 a
94.63± 4.27 a
-0.09
0.01
叶面积指数 LAI
4.17± 0.33 c
4.53± 0.35 bc
3.78± 0.58 c
6.10± 0.25 a
5.92± 0.85 ab
4.04± 0.39 c
-0.03
-0.34
Values followed by different letters are significantly different (P < 0.05) among treatments. CI: compensation index. 数据后不同小写字母表示不同灌水处理间的差异显著(P < 0.05)。
表2 不同水分条件下滴灌甜菜的农艺性状 Table 2 Major traits of sugar beet in three water conditions
表3 不同水分条件下滴灌甜菜的生理指标 Table 3 Indices of sugar beet physiological traits in three water conditions
生理指标 Physiological traits
叶片 Leaf
块根 Beet
0 d
1 d
2 d
3 d
0 d
1 d
2 d
3 d
丙二醛 Malonaldehyde (μ mol g-1 FW)
T1
22.44 e
28.28 bcde
34.86 abcd
26.95 cde
—
—
—
—
T2
23.16 de
26.89 cde
32.67 abcde
39.13 ab
—
—
—
—
T3
29.19 bcde
33.44 abcde
42.57 a
37.44 abc
—
—
—
—
电导率 Conductivity (%)
T1
0.57 e
0.92 a
0.75 cd
0.82 bc
0.61 d
0.71 c
0.73 c
0.81 b
T2
0.57 e
0.90 ab
0.68 d
0.82 bc
0.67 cd
0.93 a
0.66 a
0.80 b
T3
0.55 e
0.90 ab
0.76 cd
0.83 bc
0.67 cd
0.93 a
0.70 c
0.82 b
过氧化氢酶 Catalase (OD470 g-1 min FW)
T1
12.74 abc
14.51 ab
8.62 bc
16.21 a
7.28 a
4.04 abc
3.94 abc
3.28 bc
T2
10.65 abc
14.05 abc
8.48 bc
9.56 abc
3.54 bc
5.70 abc
3.33 bc
6.87 ab
T3
7.94 bc
9.37 abc
6.82 c
7.15 c
3.13 c
5.20 abc
4.54 abc
4.23 abc
过氧化物酶Peroxidase (OD470 g-1 min FW)
T1
25.69 d
75.06 abcd
86.17 abc
58.83 bcd
13.03 cd
14.67 bcd
15.08 bcd
16.89 abcd
T2
37.11 cd
53.11 bcd
84.72 abc
78.89 abc
18.39 abcd
21.42 ab
10.83 d
14.22 bcd
T3
55.44 bcd
98.67 ab
113.11 a
67.78 abcd
15.50 bcd
23.67 a
17.03 abcd
19.78 abc
脯氨酸 Proline (× 10-4 μ g g-1)
T1
11.24 cde
19.90 b
5.75 ef
1.84 f
1.86 bcd
1.14 d
2.64 bcd
0.95 d
T2
9.43 cde
13.09 cd
13.41 c
8.90 cde
1.32 d
1.44 cd
3.56 ab
1.90 bcd
T3
7.07 def
32.88 a
8.09 cde
27.53 a
2.08 bcd
3.18 abc
4.76 a
2.77 bcd
可溶性糖 Soluble sugar (mg g-1)
T1
3.16 ab
2.63 ab
3.36 ab
2.32 b
10.04 b
11.74 b
19.89 a
10.95 b
T2
3.40 ab
3.60 ab
3.55 ab
2.74 ab
9.03 b
10.38 b
12.10 b
12.01 b
T3
3.45 ab
3.67 ab
4.55 a
4.30 a
8.43 b
9.26 b
12.26 b
13.08 b
Catalase activity of beet expanded 1000 times. Values followed by different letters are significantly different (P < 0.05) among treatments. 块根的过氧化氢酶活性扩大了1000倍。数据后不同小写字母表示不同灌水处理间的差异显著(P < 0.05)。
表3 不同水分条件下滴灌甜菜的生理指标 Table 3 Indices of sugar beet physiological traits in three water conditions
表4 Table 4 表4(Table 4)
表4 各指标主成分的特征向量及贡献率 Table 4 Eigen vectors and percentages of accumulated contribution of principal components
指标 Index
主成分1 Principal component 1
主成分2 Principal component 2
主成分3 Principal component 3
主成分4 Principal component 4
叶丙二醛 Malonaldehyde in leaf
-0.0595
0.3877* *
-0.1955
0.0570
叶电导率 Conductivity in leaf
0.3384* *
-0.2010
-0.0280
-0.1233
叶过氧化氢酶 Catalase in leaf
0.0624
-0.4167* *
0.1500
0.1400
叶过氧化物酶 Peroxidase in leaf
-0.0360
0.3490* *
0.1633
-0.2128
叶脯氨酸 Proline in leaf
0.2676*
0.1013
0.0133
-0.4647
叶可溶性糖 Soluble sugar in leaf
0.0763
0.3743* *
0.1446
-0.0261
根电导率 Conductivity in root
0.3418* *
-0.0679
-0.1212
0.3048
根过氧化氢酶 Catalase in root
0.2139
0.0689
-0.4951*
0.1896
根过氧化物酶 Peroxidase in root
0.3625* *
0.0502*
0.1086
0.1805
根脯氨酸 Proline in root
-0.0590
0.4189* *
0.1844
-0.0599
根可溶性糖 Soluble sugar in root
-0.2275
0.0773
-0.2061
-0.2003
叶柄 Petiole
-0.2179
-0.3139*
-0.0511
-0.2359
块根 Beet
-0.3610* *
-0.1346
0.1912
0.0833
根冠比 Root/Shoot
-0.2910*
0.0914* *
0.3457
0.3808
LMA
0.1924
-0.1009
0.5555*
-0.0034
LAI
-0.3113* *
-0.1706
-0.1736
-0.2904
含糖量 Sugar content
-0.2319
0.0758
-0.2127
0.4505
特征值 Eigenvalues
6.23
5.09
1.87
1.27
百分率 Percentage (%)
36.64
29.94
10.97
7.49
累计百分率 Cumulative percentage (%)
36.64
66.58
77.56
85.05
* Significant difference at P < 0.05.* * Significant difference at P < 0.01. * 表示在0.05水平上因子与主成分相关性显著; * * 表示在0.01水平上因子与主成分相关性显著。
表4 各指标主成分的特征向量及贡献率 Table 4 Eigen vectors and percentages of accumulated contribution of principal components
郝树荣, 郭相平, 王文娟. 不同时期水分胁迫对玉米生长的后效性影响. 农业工程学报, 2010, 26(7): 71-75Hao SR, Guo XP, Wang WJ. Aftereffects of water stress on corn growth at different stages. Trans CSAE, 2010, 26(7): 71-75 (in Chinese with English abstract)[本文引用:1]
[2]
Campos M KF, CarvalhoK, Souza FS, Marur CJ, Pereira L FP, Bespalhok F JC, Vieira L GE. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot, 2011, 72: 242-250[本文引用:1]
[3]
ChołujD, KarwowskaM, CiszewskaA, JasińskaM. In?uence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L. ) plants. Acta Physiol Plant, 2008, 30: 679-687[本文引用:2]
[4]
Sarvajeet SinghG, NarendraT. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930[本文引用:1]
[5]
RathinasabapathiB. Metabolic Engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot, 2000, 86: 709-716[本文引用:1]
[6]
Maroco JP, Pereira JS. Understand ing plant responses to drought-from genes to the whole plant. Funct Plant Biol, 2003, 30: 239-264[本文引用:1]
[7]
JavadiT, ArzaniK, EbrahimzadehH. Study of proline, soluble sugar, and chlorophyll a and b changes in nine Asian and one European pear cultivar under drought stress. , 2008: 241-246[本文引用:1]
[8]
MarcińskaI, Czyczyło-MyszaI, SkrzypekE, FilekM, GrzesiakS, GrzesiakM, JanowiakF, HuraT, DziurkaM, DziurkaK, NowakowskaA, QuarrieS. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant, 2013, 35: 451-461[本文引用:1]
[9]
谢小玉, 马仲炼, 白鹏, 刘晓健. 辣椒开花结果期对干旱胁迫的形态与生理响应. , 2014, 34: 3797-3805Xie XY, Ma ZL, BaiP, Liu XJ. The morphological and physiological responses of hot pepper (Capsicum annuum L. ) to drought stress with different intensity during blossom and fruit period. , 2014, 34: 3797-3805 (in Chinese with English abstract)[本文引用:1]
[10]
周磊, 甘毅, 欧晓彬, 王根轩. 作物缺水补偿节水的分子生理机制研究进展. 中国生态农业学报, 2011, 19: 217-225ZhouL, GanY, Ou XB, Wang GX. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production. Chin J Eco-Agric, 2011, 19: 217-225 (in Chinese with English abstract)[本文引用:1]
[11]
郭相平, 康绍忠. 玉米调亏灌溉的后效性. 农业工程学报, 2000, 16(4): 58-60Guo XP, Kang SZ. After effect of regulated deficit irrigation (RDI) on maize. Trans CSAE, 2000, 16(4): 58-60 (in Chinese with English abstract)[本文引用:1]
[12]
韩占江, 于振文, 王东, 王西芝, 许振柱. 调亏灌溉对冬小麦耗水特性和水分利用效率的影响. 应用生态学报, 2009, 20: 2671-2677Han ZJ, Yu ZW, WangD, Wang XZ, Xu ZZ. Effects of regulated deficit irrigation on water consumption characteristics and water use efficiency of winter wheat. Chin J Appl Ecol, 2009, 20: 2671-2677 (in Chinese with English abstract)[本文引用:1]
王丁, 杨雪, 韩鸿鹏, 张丽琴, 薛建辉. 干旱胁迫及复水对刺槐苗水分运输过程的影响. 南京林业大学学报(自然科学版), 2015, 39(1): 67-72WangD, YangX, Han HP, Zhang LQ, Xue JH. The impact of drought and rewatering on water transportation process of Robinia pseudoacacia L. seedlings. J Nanjing For Univ, 2015, 39(1): 67-72 (in Chinese with English abstract)[本文引用:1]
[16]
陈晓远, 高志红, 罗远培. 植物根冠关系. , 2005, 41: 555-562Chen XY, Gao ZH, Luo YP. Relationship between root and shoot of plants. , 2005, 41: 555-562 (in Chinese with English abstract)[本文引用:1]
[17]
MullerB, PantinF, GenardM, TurcO, FreixesS, PiquesM, GibonY. Water deficits uncouple growth from photosynthesis increase C content, and modify the relationship between C and growth in sink organs. J Exp Bot, 2011, 62: 1715-1729[本文引用:1]
[18]
Barcia RA, Pena LB, Zawoznik MS, Benavides MP, Gallego SM. Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat. Plant Growth Regul, 2014, 74: 107-117[本文引用:1]
安玉艳, 梁宗锁, 郝文芳. 杠柳幼苗对不同强度干旱胁迫的生长与生理响应. 生态学报, 2011, 31: 716-725An YY, Liang ZS, Hao WF. Growth and physiological responses of the Periploca sepium Bunge seedlings to drought stress. Acta Ecol Sin, 2011, 31: 716-725 (in Chinese with English abstract)[本文引用:1]
[21]
薛延丰, 刘兆普. 钙离子对盐胁迫下菊芋幼苗生长、生理反应和光和能力的影响理论. 农业工程学报, 2006, 22(9): 44-47Xue YF, Liu ZP. Effects of calcium ion on growth, physiological responses and photosynthetic ability in salt-stressed Jerusalem artichoke (Helianthus tuberosus L. ) seedlings. Trans CSAE, 2006, 22(9): 44-47 (in Chinese with English abstract)[本文引用:1]
[22]
胡义, 胡庭兴, 陈洪, 王彬, 李晗. 干旱胁迫及复水对香樟幼树生理特性及生长的影响. 西北植物学报, 2015, 35: 294-301HuY, Hu TX, ChenH, WangB, LiH. Physiological properties and growth of Cinnamomum camphor saplings under drought stress and rewatering. Acta Bot Boreali-Occident Sin, 2015, 35: 294-301 (in Chinese with English abstract)[本文引用:1]
[23]
邵艳军, 山仑, 李广敏. 干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究. 中国生态农业学报, 2006, 14(1): 68-70Shao YJ, ShanL, Li GM. Comparison of osmotic regulation and antioxidation between sorghum and maize seedlings under soil drought stress and water recovering conditions. Chin J Eco-Agric, 2006, 14(1): 68-70 (in Chinese with English abstract)[本文引用:1]
[24]
王利彬, 祖伟, 董守坤, 刘丽君, 徐亚会, 李雪凝. 干旱程度及时期对复水后大豆生长和代谢补偿效应的影响. 农业工程学报, 2015(11): 150-156Wang LB, ZuW, Dong SK, Liu LJ, Xu YH, Li XN. Effects of drought stresses and times on compensation effect after re-watering in soybean. Trans CSAE, 2015(11): 150-156 (in Chinese with English abstract)[本文引用:1]