摘要以新稻20为材料进行土培试验, 设置浅水层灌溉(0 kPa)、轻度水分胁迫(-20 kPa)和重度水分胁迫(-40 kPa) 3种灌溉方式及0氮(0N, 0 kg hm-2)、中氮(MN, 240 kg hm-2)和高氮(HN, 360 kg hm-2) 3种氮水平, 研究不同水氮耦合处理对水稻根长、根冠比、根系伤流、根系有机酸含量、根系玉米素及玉米素核苷与籽粒酶活性的影响。结果表明, 灌溉方式与施氮量存在显著的互作效应, 轻度水分胁迫增加了主要生育期根长、根系伤流量、根系分泌物中有机酸总量、根系玉米素及玉米素核苷含量, 提高籽粒ATP酶、蔗糖合酶及腺苷二磷酸葡萄糖焦磷酸化酶活性, 降低穗分化后水稻根冠比, 且与MN耦合后产量最高, 为本试验最佳的水氮耦合运筹模式; 重度水分胁迫则显著降低主要生育期根长、根系伤流量、根系分泌物中有机酸总量、根系玉米素及玉米素核苷含量, 降低籽粒ATP酶、蔗糖合酶及腺苷二磷酸葡萄糖焦磷酸化酶活性, 增加主要生育期根冠比。水稻籽粒产量与主要生育期水稻根长、根系伤流量、根系分泌物中有机酸总量、根系玉米素及玉米素核苷含量均呈显著或极显著的正相关, 而穗分化至成熟期根冠比与水稻产量呈负相关; 同时水稻根长、根系伤流量、根系分泌物中有机酸总量、根系玉米素及玉米素核苷含量与籽粒ATP酶、蔗糖合酶及腺苷二磷酸葡萄糖焦磷酸化酶活性呈显著或极显著的正相关。表明通过适宜的肥水调控发挥水氮耦合效应, 可以创造良好的根系形态、提高水稻根系代谢能力和籽粒库的生理活性, 促进水稻高产。
关键词:水稻; 水氮耦合; 产量; 根系特性; 籽粒库活性 Effect of Wetting and Drying Alternative Irrigation Coupling with Nitrogen Application on Root Characteristic and Grain-sink Activity XU Guo-Wei1,2, LYU Qiang1, LU Da-Ke1, WANG He-Zheng1, CHEN Ming-Can1 1 Agricultural College, Henan University of Science and Technology, Luoyang 471003, China
2 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
Fund:This study was supported by the National Natural Science Foundation of China (U1304316), the Open Foundation for Key Laboratory of Cultivation and Physiology of Jiangsu Province (027388003K11009), and the Key Project for Science and Technology Research of Henan Provincial Department of Education (13A210266) AbstractSoil moisture and nitrogen nutrient are the two principal factors affecting rice production. Elucidation of their coupling effects on grain yield of rice ( Oryza sativa L.) has great significance for high yielding and high efficiency in production. The purposes of this study were to investigate the coupling effects of water and nitrogen on root traits and grain-sink activity. A field experiment was conducted using a mid-season japonica rice cultivar of Xindao 20 with three treatments of different nitrogen levels, including 0N, MN (240 kg ha-1) and HN (360 kg ha-1), and three irrigation regimes, including submerged irrigation (0 kPa), alternate wetting and moderate drying (-20 kPa) and alternate wetting and severe drying (-40 kPa) in 2013 and 2014. There was a significant interaction between irrigation regimes and nitrogen applications, with a similar result in two years. The grain yield was the highest in the treatment of MN coupling with mild water stress due to improved seed filling rate and grain weight. In the same nitrogen level, root length, root bleeding, organic acid and Z+ZR contents in roots at main growth stages were higher in treatment of alternate wetting and moderate drying than in treatment of submerged irrigation, meanwhile activating of ATPase, sucrose synthase and adenosine phosphate glucose pyrophosphorylase (AGPase) activity in grain were also increased during grain filling period, but root-shoot ratio was lower after panicle initiation stage. The treatment of mild water stress and MN enhanced rice yield and nitrogen use efficiency, being the best water-nitrogen coupling management model in this paper. The opposite result was observed under the condition of alternate wetting and severe drying. Grain yield positively correlated with root length and root metabolism indices at main growth stages and negatively correlated with ratio of root to shoot at the stage of heading. A negative correlation was observed between root-shoot ratio and activating of ATPase, sucrose synthase and AGPase in grain, while a significant or very significant and positive correlation between root length, root metabolism traits and aboveground development. These results suggest that a good root morphology, increasing root metabolism and aboveground development capabilities through the appropriate regulation of water coupling with nitrogen application will be much more beneficial to increasing grain yield in rice.
Keyword:Rice; Water and nitrogen coupling; Yield; Root characteristic; Sink activity in grain Show Figures Show Figures
表1 水氮耦合下产量及抽穗期主要根系性状的方差分析 Table 1 Analysis of variance of rice yield and main root traits under the condition of water and nitrogen coupling
变异来源 Source of variation
自由度 df
产量 Grain yield (g m-2)
根长 Root length (m hill-1)
根冠比 Root-shoot ratio
根系伤流量 Root bleeding (mg h-1plant-1)
根系氧化力 Root oxidation activity (μ g α -NA h-1 g-1)
根系有机酸总量 Root total organic acid content (mg g-1)
根系细胞分裂素含量 Z+ZR content (pmol g-1)
Y
1
NS
NS
NS
NS
NS
NS
NS
W
2
387.5* *
362.6* *
18.7* *
274.1* *
421.5* *
38.7* *
564.7* *
N
2
562.3* *
1002.7* *
42.4* *
536.3* *
358.4* *
152.5* *
379.2* *
Y× W
2
NS
NS
NS
NS
NS
NS
NS
Y× N
2
NS
NS
NS
NS
NS
NS
NS
W× N
4
19.5* *
34.7* *
3.0*
31.4* *
19.9* *
4.6*
9.5* *
Y× W× N
4
NS
NS
NS
NS
NS
NS
NS
NS: not significant (P > 0.05). * and * * represent P< 0.05 and P < 0.01, respectively. The indicator data were determined at heading stage, expect for grain yield. Y, W, and N represent year, water and nitrogen, respectively. NS表示在0.05水平上差异不显著。* 与* * 表示在0.05和0.01水平上差异显著与极显著。除产量外其余指标均为抽穗期测定数据。Y表示年度间, W表示水分处理, N表示施氮量。
表1 水氮耦合下产量及抽穗期主要根系性状的方差分析 Table 1 Analysis of variance of rice yield and main root traits under the condition of water and nitrogen coupling
表2 水氮耦合对水稻产量及产量构成因素的影响 Table 2 Effect of water and nitrogen coupling on yield and its components in whole growing period
年代 Year
处理 Treatment
单位面积穗数 Panicles m-2
每穗粒数 Spikelet per panicle
结实率 Filled grain rate (%)
千粒重 1000-grain weight (g)
产量 Yield (g m-2)
2014
0N (0 kPa)
256.7 d
123.3 bc
84.2 b
25.0 c
666.2 d
0N (-20 kPa)
252.7 d
118.0 c
87.6 a
25.7 b
671.2 d
0N (-40 kPa)
226.0 e
112.5 d
81.7 bc
24.8 c
515.2 f
MN (0 kPa)
390.7 ab
131.0 a
77.9 d
25.6 b
1020.6 ab
MN (-20 kPa)
386.7 ab
126.1 ab
81.4 bc
26.3 a
1043.8 a
MN (-40 kPa)
356.0 c
116.3 c
76.2 d
25.1 c
791.9 c
HN (0 kPa)
406.7 a
134.3 a
72.0 e
25.1 c
987.0 b
HN (-20 kPa)
393.3 a
130.5 a
76.4 d
25.8 b
1011.8 ab
HN (-40 kPa)
364.0 c
102.9 e
65.1 f
24.7 c
602.3 e
2013
0N (0 kPa)
260.8 d
120.7 cd
82.9 b
25.3 c
660.2 d
0N (-20 kPa)
254.1 e
118.9 d
86.7 a
25.8 b
675.8 d
0N (-40 kPa)
230.8 f
110.3 e
81.6 bc
24.9 d
517.3 f
MN (0 kPa)
415.7 a
134.0 ab
79.1 cd
25.4 bc
1119.2 ab
MN (-20 kPa)
411.3 ab
128.0 bc
81.0 bc
26.5 a
1130.1 a
MN (-40 kPa)
381.9 c
114.1 de
73.7 ef
24.9 d
799.7 c
HN (0 kPa)
430.1 a
142.6 a
70.1 f
25.0 cd
1074.8 b
HN (-20 kPa)
420.9 a
137.2 a
74.1 e
25.9 b
1108.3 ab
HN (-40 kPa)
384.1 c
101.1 f
63.4 g
24.6 de
605.6 e
0N: no nitrogen applied; MN: nitrogen 240 kg hm-2; HN: nitrogen 360 kg hm-2. Values within the same column followed by different letters are significantly different at P< 0.05. 0N: 不施氮肥; MN: 240 kg N hm-2; HN: 360 kg N hm-2; 同一列标以不同字母的值在0.05水平上差异显著。
表2 水氮耦合对水稻产量及产量构成因素的影响 Table 2 Effect of water and nitrogen coupling on yield and its components in whole growing period
表3 Table 3 表3(Table 3)
表3 水氮耦合对水稻根长及根冠比的影响 Table 3 Effect of water and nitrogen coupling on root length and root-shoot ratio in whole growing period
处理 Treatment
根长 Root length ( m hill-1)
根冠比 Root-shoot ratio
分蘖盛期Mid-tillering
穗分化始期 PI
抽穗期 Heading
成熟期 Maturity
分蘖盛期Mid-tillering
穗分化始期 PI
抽穗期 Heading
成熟期 Maturity
0N (0 kPa)
36.4 g
75.5 f
69.4 ef
41.0 e
0.30 e
0.21 de
0.19 b
0.03 a
0N (-20 kPa)
50.2 f
89.0 e
77.7 e
48.8 d
0.29 e
0.22 cd
0.17 cd
0.03 a
0N (-40 kPa)
30.7 h
63.4 g
54.3 g
32.8 f
0.22 f
0.24 b
0.21 a
0.03 a
MN (0 kPa)
84.2 c
198.5 b
169.8 b
89.8 b
0.35 d
0.21 de
0.15 ef
0.03 a
MN (-20 kPa)
91.3 ab
209.1 a
181.4 a
102.9 a
0.36 d
0.21 de
0.14 f
0.03 a
MN (-40 kPa)
68.8 d
144.3 c
131.8 c
71.4 c
0.41 ab
0.24 b
0.17 cd
0.03 a
HN (0 kPa)
89.2 bc
203.3 b
174.9 ab
96.5 b
0.38 c
0.23 bc
0.17 cd
0.03 a
HN (-20 kPa)
96.6 a
212.5 a
184.3 a
105.5 a
0.39 bc
0.23 bc
0.15 ef
0.04 a
HN (-40 kPa)
59.3 e
127.1 d
106.9 d
65.9 c
0.43 a
0.26 a
0.19 b
0.04 a
0N: no nitrogen applied; MN: nitrogen 240 kg hm-2; HN: nitrogen 360 kg hm-2; PI: panicle initiation. Values within the same column followed by different letters are significantly different at P< 0.05. 0N: 不施氮肥; MN: 240 kg N hm-2; HN: 360 kg N hm-2; 同一列不同字母表示在0.05水平上差异显著。
表3 水氮耦合对水稻根长及根冠比的影响 Table 3 Effect of water and nitrogen coupling on root length and root-shoot ratio in whole growing period
图1 水氮耦合对水稻生育过程中根系伤流强度的影响0N: 不施氮肥; MN: 施氮240 kg· hm-2; HN: 施氮360 kg hm-2; PI: 幼穗分化始期; 20DAA: 抽穗后20 d; 同一生育期柱上不同字母表示各处理在0.05水平上差异显著。Fig. 1 Effect of water and nitrogen coupling on root bleeding intensity during the growth and development of rice cultivars0N: no nitrogen applied; MN: nitrogen 240 kg hm-2; HN: nitrogen 360 kg hm-2; PI: initiation of panicle differentiation; 20DAA: 20 days after anthesis; Bars within the same growth period represented by different letters are significantly different at P< 0.05.
图2 水氮耦合对水稻生育过程中根系有机酸总量的影响0N: 不施氮肥; MN: 施氮240 kg· hm-2; HN: 施氮360 kg hm-2; PI: 幼穗分化始期; 20DAA: 抽穗后20 d。同一生育期不同字母表示各处理在0.05水平上差异显著。Fig. 2 Effect of water and nitrogen coupling on root organic acid contents during growth and development of rice0N: no nitrogen applied; MN: nitrogen 240 kg hm-2; HN: nitrogen 360 kg hm-2; PI: initiation of panicle differentiation; 20DAA: 20 days after anthesis. Bars within the same growth period represented by different letters are significantly different at P < 0.05.
图3 水氮耦合对水稻生育过程中根系玉米素及玉米素核苷含量的影响0N: 不施氮肥; MN: 施氮240 kg hm-2; HN: 施氮360 kg hm-2; PI: 幼穗分化始期; 20DAA: 抽穗后20 d。同一生育期不同字母表示各处理在0.05水平上差异显著。Fig. 3 Effect of water and nitrogen coupling on root Z+ZR content during growth and development of rice cultivars0N: no nitrogen applied; MN: nitrogen 240 kg hm-2; HN: nitrogen 360 kg hm-2; PI: initiation of panicle differentiation; 20DAA: 20 days after anthesis. Bars within the same growth period represented by different letters are significantly different at P < 0.05.
表4 全生育期水氮耦合对水稻灌浆期籽粒酶活性的影响 Table 4 Effect of water and nitrogen coupling on enzyme activities in grain at filling stage
处理 Treatment
抽穗期 Heading stage
花后20 d 20 DAA
ATP酶 ATPase (μ mol Pi mg-1 Pro h-1)
蔗糖合酶 Sucrose synthase (μ mol g-1 FW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶 AGPase (μ mol g-1 FW min-1)
ATP酶 ATPase (μ mol Pi mg-1 Pro h-1)
蔗糖合酶 Sucrose synthase (μ mol g-1 FW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶 AGPase (μ mol g-1 FW min-1)
0N (0 kPa)
3.8 ef
8.3 cd
6.1 e
3.0 d
3.8 e
2.1 g
0N (-20 kPa)
4.4 cd
9.0 c
6.5 d
3.5 c
4.7 d
2.6 f
0N (-40 kPa)
3.3 g
7.6 de
5.6 f
2.6 e
3.1 f
1.8 h
MN (0 kPa)
5.2 b
11.2 b
7.5 bc
4.3 b
5.8 b
3.8 c
MN (-20 kPa)
6.1 a
13.1 a
7.9 a
5.0 a
6.4 a
4.6 a
MN (-40 kPa)
4.6 c
8.8 cd
6.1 e
3.8 c
4.6 d
3.1 e
HN (0 kPa)
4.8 bc
10.4 b
7.2 c
3.7 c
5.2 c
3.4 d
HN (-20 kPa)
5.7 a
12.6 a
7.7 ab
4.4 b
5.9 b
4.3 b
HN (-40 kPa)
4.1 de
8.0 d
5.8 ef
3.1 d
3.8 e
2.5 f
0N: no nitrogen applied; MN: nitrogen 240 kg hm-2; HN: nitrogen 360 kg hm-2; PI: initiation of panicle differentiation; 20DAA: 20 days after anthesis. Values within a column followed by different letters are significantly different at P< 0.05. 0N: 不施氮肥; MN: 施氮240 kg hm-2; HN: 施氮360 kg· hm-2; PI: 幼穗分化始期; 20DAA: 抽穗后20 d。同一列中标以不同字母的值在0.05水平上差异显著。
表4 全生育期水氮耦合对水稻灌浆期籽粒酶活性的影响 Table 4 Effect of water and nitrogen coupling on enzyme activities in grain at filling stage
表5 Table 5 表5(Table 5)
表5 根系指标与产量及籽粒库活性的相关关系分析 Table 5 Correlation coefficients of yield and enzyme activities in grain with root traits at different growth stages
根系性状 Root trait
与产量相关系数 Correlation coefficients of yield with
与籽粒库活性部相关 Correlation coefficients between sink activity
分蘖盛期 Mid-tillering
穗分化始期 PI
抽穗期 Heading
成熟期 Maturity
ATP酶 ATPase (μ mol Pi mg-1 Pro h-1)
蔗糖合酶 Sucrose synthase (μ mol g-1 FW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶 AGPase (μ mol g-1 FW min-1)
根长 Root length
0.821*
0.837*
0.852*
0.811*
0.822*
0.722
0.672
根冠比 Root-shoot ratio
0.156
-0.312
-0.827*
-0.018
-0.944*
-0.847*
-0.854*
根系伤流量 Root bleeding
0.669
0.933* *
0.931* *
—
0.908* *
0.979* *
0.972* *
根系有机酸 Root organic acid
0.805*
0.932* *
0.931* *
—
0.908* *
0.980* *
0.971* *
根系生长素 Z+ZR in root
0.684
0.920* *
0.911* *
—
0.903* *
0.906* *
0.899* *
“ — ” no data available. 0N: no nitrogen applied; MN: nitrogen 240 kg hm-2; HN: nitrogen 360 kg hm-2; PI: initiation of panicle differentiation; 20DAA: 20 days after anthesis. * Significance of correlation at P < 0.05.* * Significance of correlation at P < 0.01. “ — ” : 未测定; 0N: 不施氮肥; MN: 施氮240 kg hm-2; HN: 施氮360 kg hm-2; PI: 幼穗分化始期; 20DAA: 抽穗后20 d。* 相关在0.05水平显著; * * 相关在0.01水平显著。
表5 根系指标与产量及籽粒库活性的相关关系分析 Table 5 Correlation coefficients of yield and enzyme activities in grain with root traits at different growth stages
Peng SB, Tang QY, Zou YB. Current status and challenges of rice production in China. Plant Product Sci, 2009, 12: 3-8[本文引用:1]
[2]
李红莉, 张卫峰, 张福锁, 杜芬, 李亮科. 中国主要粮食作物化肥施用量与效率变化分析. , 2010, 16: 1136-1143Li HL, Zhang WF, Zhang FS, DuF, Li LK. Chemical fertilizer use and efficiency change of main grain crops in China. , 2010, 16: 1136-1143 (in Chinese with English abstract)[本文引用:1]
[3]
朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259-273Zhu ZL, Jin JY. Fertilizer use and food security in China. Plant Nutr Fert Sci, 2013, 19: 259-273 (in Chinese with English abstract)[本文引用:2]
[4]
Cassman KG, DobermannA, Waiters DT. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Env Resour, 2003, 28: 315-358[本文引用:1]
[5]
Tilman DK, Cassman KG, Matson PA. Agricultural sustainability and intensive production practices. Nature, 2002, 418: 671-678[本文引用:1]
[6]
彭玉, 马均, 蒋明金, 孙永健, 杨志远. 缓/控释肥对杂交水稻根系形态、生理特性和产量的影响. 植物营养与肥料学报, 2013, 19: 1048-1057PengY, MaJ, Jiang MJ, Sun YJ, Yang ZY. Effects of slow/controlled release fertilizers on root morphological and physiological characteristic of rice. Plant Nutr Fert Sci, 2013, 19: 1048-1057 (in Chinese with English abstract)[本文引用:3]
[7]
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. , 2011, 44: 36-46Yang JC. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. , 2011, 44: 36-46 (in Chinese with English abstract)[本文引用:4]
[8]
程建峰, 戴廷波, 曹卫星, 姜东, 刘宜柏. 不同类型水稻种质氮素营养效率的变异分析. , 2007, 13: 175-183Chen JF, Dai TB, Cao WX, JiangD, Liu YB. Variations of nitrogen nutrition efficiency in different rice germplasm types. , 2007, 13: 175-183 (in Chinese with English abstract)[本文引用:1]
[9]
朱德峰, 林贤青, 曹卫星. 水稻深层根系对生长和产量的影响. , 2001, 34: 429-432Zhu DF, Lin XQ, Cao WX. Effects of deep roots on growth and yield in two rice varieties. , 2001, 34: 429-432 (in Chinese with English abstract)[本文引用:1]
[10]
Yang JC, ZhangH, Zhang JH. Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012, 11: 920-926[本文引用:1]
[11]
XueQ, ZhuZ, MusickJ, StewartB, Dusek DA. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil, 2003, 257: 151-161[本文引用:1]
[12]
Ma SC, Li FM, Xu BC, Huang ZB. Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grainyield of winter wheat. Field Crops Res, 2010, 115: 158-164[本文引用:1]
[13]
张凤翔, 周明耀, 周村林, 钱晓晴. 水肥耦合对水稻根系形态与活力的影响. 农业工程学报, 2006, 22(5): 197-200Zhang FX, Zhou MY, Zhou CL, Qian XQ. Effect of water and fertilizer coupling on root morphological characteristic and activity of rice. Trans CSAE, 2006, 22(5): 197-200 (in Chinese with English abstract)[本文引用:2]
[14]
InukaiY, AshikariM, KitanoH. Function of the root system and molecular mechanism of crown root formation in rice. , 2004, 45: 17[本文引用:1]
[15]
陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系. , 2013, 39: 1899-1908Chen DG, Zhou XQ, Li LJ, Liu CG, ZhangX, Chen YD. Relationship between root morphological characteristics and yield components of major commercial indica rice in South China. , 2013, 39: 1899-1908 (in Chinese with English abstract)[本文引用:1]
[16]
戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. , 2012, 45: 4770-4781JiL, Li YX, Zhang XZ, Yu HY. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. , 2012, 45: 4770-4781 (in Chinese with English abstract)[本文引用:1]
[17]
Yang JC, Zhang JH. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177-3189[本文引用:3]
[18]
Evan J R. Nitrogen and photosynthesis in flag leaf of wheat. , 1985, 72: 297--302[本文引用:1]
Xue YG, DuanH, Liu LJ, Wang ZQ, Yang JC, Zhang JH. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013, 53: 271-284[本文引用:1]
[21]
薛亚光, 陈婷婷, 杨成, 王志琴, 刘立军, 杨建昌. 中粳稻不同栽培模式对产量及其生理特性的影响. , 2010, 36: 466-476Xue YG, Chen TT, YangC, Wang ZQ, Liu LJ, Yang JC. Effects of different cultivation patterns on the yield and physiological characteristics in mid-season japonica rice. , 2010, 36: 466-476 (in Chinese with English abstract)[本文引用:1]
戢林, 李廷轩, 张锡洲, 余海英. 水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征. , 2012, 18: 1046-1055JiL, Li TX, Zhang XZ, Yu HY. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency. , 2012, 18: 1046-1055 (in Chinese with English abstract)[本文引用:1]
[24]
BollmarkM, KubatB, EliassonL. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. J Plant Physiol, 1988, 132: 262-265[本文引用:1]
[25]
Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81[本文引用:1]
[26]
PrasertsakA, FukaS. Nitrogen availability and water stress interaction on rice growth and yield. Field Crops Res, 1997, 52: 249-260[本文引用:1]
[27]
Aqueel MA, Leather SR. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L. ) and Sitobion avenae (F. ) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot, 2011, 30: 216-221[本文引用:1]
[28]
Sand hua SS, Mahalb SS, Vashistb KK, Buttar GS, Brbr AS, SinghM. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India. Agric Water Manag, 2012, 104: 32-39[本文引用:1]
[29]
姚锋先. 不同水氮管理对水稻生长和水氮效率影响的生理机制研究. 华中农业大学博士学位论文, , 2011Yao FX. Studies on Physiological Mechanism of Rice Growth and Water and Nitrogen Use Efficiency under Different Water and Nitrogen Regimes. PhD Dissertation of Huazhong Agriculture University, Wuhan, , 2011 (in Chinese with English abstract)[本文引用:1]
[30]
王丹英, 韩勃, 章秀福, 邵国胜, 徐春梅, 符冠富. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34: 803-808Wang DY, HanB, Zhang XF, Shao GS, Xu CM, Fu GF. Influence of rhizosphere oxygen concentration on rice root growth. Acta Agron Sin, 2008, 34: 803-808 (in Chinese with English abstract)[本文引用:1]
[31]
兰忠明, 林新坚, 张伟光, 张辉, 吴一群. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响. 中国农业科学, 2012, 45: 1521-1531Lan ZM, Lin XJ, Zhang WG, ZhangH, Wu YQ. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus. Sci Agric Sin, 2012, 45: 1521-1531 (in Chinese with English abstract)[本文引用:2]
[32]
刘立军, 常二华, 范苗苗, 王志琴, 杨建昌. 结实期钾、钙对水稻根系分泌物与稻米品质的影响. , 2011, 37: 661-669Liu LJ, Chang EH, Fan MM, Wang ZQ, Yang JC. Effects of potassium and calcium on root exudates and grain quality during grain filling. , 2011, 37: 661-669 (in Chinese with English abstract)[本文引用:1]
[33]
吴芳, 高迎旭, 宋娜, 郭世伟, 沈其荣. 氮素形态及水分胁迫对水稻根系生理特性的影响. 南京农业大学学报, 2008, 3l: 63-66WuF, Gao YX, SongN, Guo SW, Shen QR. Effects of nitrogen form and water stress on root physiological characteristics of rice plants. J Nanjing Agric Univ, 2008, 31: 63-66 (in Chinese with English abstract)[本文引用:1]
[34]
Cabangon RJ, Tuong TP, Castillo EG, Bao LX, Lu GA, Wang GH, Cui YL, Bouman BA, Li YH, Chen CD. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004, 2: 195-206[本文引用:2]
[35]
王贺正, 徐国伟, 吴金芝, 张均, 陈明灿, 付国占, 李友军. 不同氮素水平对豫麦49-198籽粒灌浆及淀粉合成相关酶活性的调控效应. , 2013, 19: 288--296Wang HZ, Xu GW, Wu JZ, ZhangJ, Chen MC, Fu GZ, Li YJ. Regulation effect of nitrogen fertilization on grain filling and activities of enzymes involved in starch synthesis of Yumai 49-198. , 2013, 19: 288-296 (in Chinese with English abstract)[本文引用:2]
[36]
李春燕, 徐雯, 刘立伟, 杨景, 朱新开, 郭文善. 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性变化. 应用生态学报, 2015, 26: 2015-2022Li CY, XuW, Liu LW, YangJ, Zhu XK, Guo WS. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chin J Appl Ecol, 2015, 26: 2015-2022 (in Chinese with English abstract)[本文引用:2]
[37]
张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030ZhangH, Huang ZH, Wang JC, Wang ZQ, Yang JC. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agron Sin, 2011, 37: 1020-1030 (in Chinese with English abstract)[本文引用:2]
[38]
刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. , 2014, 40: 1999-2007Liu LJ, Wang KJ, Bian JL, Xiong YW, ChenL, Wang ZQ, Yang JC. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. , 2014, 40: 1999-2007 (in Chinese with English abstract)[本文引用:2]
[39]
褚光, 周群, 薛亚光, 颜晓元, 刘立军, 杨建昌. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响. 作物学报, 2014, 40: 1245-1258ChuG, ZhouQ, Xue YG, Yan XY, Liu LJ, Yang JC. Effects of cultivation patterns on root morph-physiological traits and aboveground development of japonica hybrid rice cultivar Changyou 5. Acta Agron Sin, 2014, 40: 1245-1258 (in Chinese with English abstract)[本文引用:2]
[40]
Chauhan BS, Abugho SB. Effects of water regime, nitrogen fertilization, and rice plant density on growth and reproduction of lowland weedEchinochloa crusgalli. Crop Prot, 2013, 54: 142-147[本文引用:2]