删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

北方冬麦区新育成优质小麦品种面条品质相关性状分析

本站小编 Free考研考试/2021-12-26

孔欣欣1,2, 张艳2, 赵德辉2, 夏先春2, 王春平1,*, 何中虎2,3,*
1河南科技大学农学院, 河南洛阳471003

2中国农业科学院作物科学研究所 / 国家小麦改良中心, 北京100081

3CIMMYT中国办事处, 北京100081

*通讯作者(Corresponding authors): 何中虎, E-mail:zhhecaas@163.com, Tel: 010-82108547; 王春平, E-mail:wcp@haust.edu.cn 第一作者联系方式: E-mail:kongxinxin@qq.com
收稿日期:2015-12-31 接受日期:2016-05-09网络出版日期:2016-05-23基金:本研究由国家自然科学基金项目(31371623, 31461143021)和中国农业科学院创新工程项目资助

摘要为了解近年北方冬麦区育成优质小麦品种的品质状况, 2013—2014和2014—2015年度在山东济宁和河北高邑统一种植52份优质品种(系)及6份国外代表性品种, 测定其磨粉品质、和面仪和混合实验仪特性、淀粉糊化特性及面条品质, 并利用5个基因特异性标记分析基因型分布及其对品质性状的影响。结果表明, 大部分品种为硬质、中强筋类型, 品种间出粉率、面粉a*值、b*值、黄色素含量、PPO活性、和面仪参数、混合实验仪形成时间和稳定时间差异较大。和面仪8 min带宽和混合实验仪稳定时间可作为预测面条品质的重要指标, 可分别解释面条总分变异33.3%和34.4%。 Ppo-A1a Ppo-A1b频率为41.4%和58.6%, 两种基因型间PPO活性差异显著( P< 0.05); Ppo-D1a Ppo-D1b频率为51.7%和48.3%, 但PPO活性差异不显著; Psy-A1a Psy-A1b频率为81.0%和19.0%, 两种基因型间黄色素含量差异显著( P< 0.05); 1BL/1RS易位和非易位品种频率为13.8%和86.2%, 两种基因型间面粉L*值、黄色素含量、和面仪衰落势与8 min带宽、混合实验仪稳定时间等差异显著( P< 0.05)。面条品质较好的品种包括Sunzell、石优17、郑麦366、中麦895、周麦26、CA1004和石4185。本研究明确了58份小麦品种(系)的品质特征和基因型分布, 为优质小麦新品种选育和推广提供了重要信息。

关键词:普通小麦; 品质性状; 面条品质; 分子标记
Noodle Quality Evaluation of New Wheat Cultivars from Northern China Winter Wheat Regions
KONG Xin-Xin1,2, ZHANG Yan2, ZHAO De-Hui2, XIA Xian-Chun2, WANG Chun-Ping1,*, HE Zhong-Hu2,3,*
1College of Agronomy, Henan University of Science & Technology, Luoyang 471003, China

2Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China

3CIMMYT-China Office, c/o CAAS, Beijing 100081, China

Fund:This study was founded by the National Natural Science Foundation of China (31371623, 31461143021) and the Agricultural Science and Technology Innovation Program (CAAS)
AbstractFifty-two cultivars and lines from Northern China Winter Wheat Regions, and six cultivars from Australia and America were planted in two locations in two years to evaluate their milling quality, Mixograph and Mixolab parameters, pasting properties and noodle quality. Five gene-specific markers were used to test their effects on quality traits. The results indicated that most of the tested cultivars were featured with hard grain and strong gluten. Large variations of flour yield, flour a* value, b* value, yellow pigment content, PPO activity, Mixograph parameters, Mixolab parameters such as development time and stability were observed. The Mixograph parameter width at 8 min and Mixolab parameter stability were important for predicting noodle quality, accounting for 36.9% and 28.0% of the variation for noodle total score, respectively. Ppo-A1aand Ppo-A1bgenotypes had the frequency of 41.4% and 58.6%, respectively, with significant difference in ( P< 0.05) PPO activity. The frequency of Ppo-D1a and Ppo-D1bwas 51.7% and 48.3%, respectively, and there was no significant difference in PPO activity between two genotypes. The frequency of Psy-A1a and Psy-A1b was 81.0% and 19.0%, respectively, and the yellow pigment contents of two genotypes were significantly different ( P < 0.05). The 1BL/1RS and non-1BL/1RS cultivars had the frequency of 13.8% and 86.2%, respectively, with significant difference ( P < 0.05) in flour L* value, yellow pigment content, Mixgraph parameters such as right of peak slope and width at 8 min, and Mixolab parameter stability. Four cultivars including Zhoumai 26, Zhongmai 895, Sunzell, and CA1004 showed excellent noodle quality. This study provides important informations for wheat breeding and cultivar extension.

Keyword:Bread wheat; Quality characteristics; Chinese noodle quality; Molecular markers
Show Figures
Show Figures






小麦是我国第三大粮食作物, 了解最新育成品种的品质状况对小麦育种和生产都具有重要指导意义[1]。磨粉品质是小麦加工品质的重要内容, 主要包括籽粒硬度、出粉率、面粉颜色等指标, 其中面粉及其制品颜色受黄色素和多酚氧化酶(polyphenol oxidase, PPO)等影响较大[2]。面团流变学特性是面团耐揉性和黏弹性的综合表现[3], 和面仪(Mixograph)和混合实验仪(Mixolab)是评价面团流变学特性的常用仪器, 能在一定程度上反映品种品质优劣。Mixolab近年开始在国内外广泛应用, 能有效反映面粉加水后恒温揉混、面团升温后蛋白质弱化及淀粉糊化特性, 对面包、饼干、糕点和面条的品质特性具有很好预测作用[4, 5, 6, 7, 8]。面条是我国传统主食之一, 其品质主要受籽粒硬度、蛋白质含量、面粉色泽相关性状、面筋质量及淀粉糊化参数影响, 面条品质遗传改良已成为我国育种的主要目标[9, 10, 11, 12, 13, 14]。因此, 明确最新育成品种品质特征及混合实验仪参数等对面条品质的影响, 可为小麦品质改良提供理论依据。
分子标记技术的发展为准确快速鉴定品质性状相关基因提供了可能。用PPO活性的基因特异性标记PPO18能检测等位基因PPO-A1aPPO-A1b[15], 互补显性标记PPO16和PPO29能检测等位基因PPO-D1aPPO-D1b[16]; 黄色素含量的基因特异性标记YP7A能检测等位基因Psy-A1aPsy-A1b[17]。上述基因特异性标记可作为面粉色泽改良的分子育种辅助工具[18, 19]。H20能特异性检测1BL/1RS易位系[20], 1BL/1RS易位对面条品质有显著负向影响, 能显著提高黄色素含量, 但对淀粉特性影响不显著[17, 21, 22, 23]。利用基因特异性标记能快速明确品质性状的基因型, 有助于了解品种品质状况, 为品质改良提供基因型基础。
改良小麦品质是我国育种和生产的重要目标, 因此定期全面系统分析新育成品种品质特性具有重要意义。He等[24]对2000年前后国内育成的优质品种进行了面团流变学特性分析及面包、面条品质评价, Zhang等[25]对2003年前后我国北方冬麦区大面积推广的19份优质品种品质特性进行系统分析, 唐建卫等[7]对2005年前后42份北方冬麦区育成的优质强筋品种及山东省主栽品种品质性状进行研究。2011年至今, 北方冬麦区又相继育成了一批优质品种(系), 但其品质资料来自不同地点样品在不同实验室的测定结果, 可比性差, 难以为育种单位、生产和面粉加工企业提供准确详细的品种信息。因此, 我们以两年两点试验全面系统分析供试品种的磨粉品质、和面仪与混合实验仪特性、淀粉糊化特性及面条品质, 为优质小麦新品种选育和生产提供理论依据。
1 材料与方法1.1 试验材料供试材料包括我国1990— 2010年育成的优质品种17份和2011年及以后育成的优质品种(系) 32份, 以及高产对照品种3份、美国和澳大利亚代表性优质品种6份(表1), 其中1990— 2010年育成品种济麦20、豫麦34、郑麦366具有较好的面包、面条品质, 中优206、师栾02-1、藁城8901、济南17、新麦26为优质强筋麦。
2013— 2014和2014— 2015年度, 将所有品种种植于山东济宁和河北高邑, 随机区组设计, 2次重复, 小区面积6.0 m2, 行长4.0 m, 行距0.2 m, 6行区, 按当地常规管理。所有样品无穗发芽, 收获后统一磨粉。
表1
Table 1
表1(Table 1)
表1 58份小麦品种来源、面筋类型、面条评分及分子标记检测结果 Table 1 Origin, gluten type, noodle score, and molecular marker results in 58 wheat cultivars
品种1)
Cultivar 1)
来源
Origin
面筋类型2)
Gluten type 2)
面条评分
Noodle score
Ppo-A1Ppo-D1Psy-A11BL/1RS 3)
中优206 Zhongyou 206中国北京 Beijing, ChinaS64.9Ppo-A1aPpo-D1aPsy-A1a
中麦996 Zhongmai 996中国北京 Beijing, ChinaM68.0Ppo-A1bPpo-D1aPsy-A1a
中麦998 Zhongmai 998中国北京 Beijing, ChinaM64.8Ppo-A1bPpo-D1aPsy-A1a
中麦629 Zhongmai 629中国北京 Beijing, ChinaM66.5Ppo-A1aPpo-D1aPsy-A1a
中麦1062 Zhongmai 1062中国北京 Beijing, ChinaM66.0Ppo-A1bPpo-D1aPsy-A1a
CA0493中国北京 Beijing, ChinaS67.4Ppo-A1bPpo-D1aPsy-A1a
CA1004中国北京 Beijing, ChinaM70.7Ppo-A1bPpo-D1aPsy-A1a
农大3615 Nongda 3615中国北京 Beijing, ChinaW67.5Ppo-A1bPpo-D1aPsy-A1a
农大3753 Nongda 3753中国北京 Beijing, ChinaS63.3Ppo-A1bPpo-D1aPsy-A1a
农大5363 Nongda 5363中国北京 Beijing, ChinaW65.8Ppo-A1aPpo-D1aPsy-A1a
GY12014中国河北 Hebei, ChinaS65.1Ppo-A1bPpo-D1bPsy-A1a
GY12023中国河北 Hebei, ChinaS63.5Ppo-A1bPpo-D1bPsy-A1a
师栾02-1 Shiluan 02-1中国河北 Hebei, ChinaS64.2Ppo-A1bPpo-D1bPsy-A1a
石优17 Shiyou 17中国河北 Hebei, ChinaM71.0Ppo-A1aPpo-D1aPsy-A1a
石优20 Shiyou 20中国河北 Hebei, ChinaS65.8Ppo-A1bPpo-D1aPsy-A1a
藁优2018 Gaoyou 2018中国河北 Hebei, ChinaS67.5Ppo-A1bPpo-D1aPsy-A1a
藁城8901 Gaocheng 8901中国河北 Hebei, ChinaS64.4Ppo-A1bPpo-D1aPsy-A1a
石4185 Shi 4185中国河北 Hebei, ChinaW70.3Ppo-A1bPpo-D1aPsy-A1b
济南17 Jinan 17中国山东Shandong, ChinaS63.0Ppo-A1bPpo-D1bPsy-A1a
济麦20 Jimai 20中国山东Shandong, ChinaS67.9Ppo-A1bPpo-D1aPsy-A1a
济麦22 Jimai 22中国山东Shandong, ChinaW67.2Ppo-A1bPpo-D1bPsy-A1a
济麦23 Jimai 23中国山东Shandong, ChinaM64.3Ppo-A1bPpo-D1bPsy-A1a
济麦24 Jimai 24中国山东Shandong, ChinaM64.7Ppo-A1bPpo-D1aPsy-A1a
济麦0860229 Jimai 0860229中国山东Shandong, ChinaS63.5Ppo-A1bPpo-D1bPsy-A1a
12品404 12-Pin-404中国山东Shandong, ChinaS63.7Ppo-A1bPpo-D1aPsy-A1a
洲元9369 Zhouyuan 9369中国山东Shandong, ChinaS65.1Ppo-A1bPpo-D1aPsy-A1a
山农11-28 Shannong 11-28中国山东Shandong, ChinaM69.3Ppo-A1aPpo-D1bPsy-A1b+
郑麦366 Zhengmai 366中国河南 Henan, ChinaS70.9Ppo-A1bPpo-D1aPsy-A1a
郑麦129 Zhengmai 129中国河南 Henan, ChinaM67.1Ppo-A1bPpo-D1bPsy-A1a
郑5373 Zheng 5373中国河南 Henan, ChinaS65.5Ppo-A1aPpo-D1bPsy-A1b
豫麦34 Yumai 34中国河南 Henan, ChinaS67.3Ppo-A1aPpo-D1aPsy-A1a
中麦895 Zhongmai 895中国河南 Henan, ChinaW70.9Ppo-A1aPpo-D1aPsy-A1a+
中优255 Zhongyou 255中国河南 Henan, ChinaS65.8Ppo-A1aPpo-D1bPsy-A1a
12CA25中国河南 Henan, ChinaS64.8Ppo-A1bPpo-D1bPsy-A1a
12CA29中国河南 Henan, ChinaS65.2Ppo-A1bPpo-D1bPsy-A1a
12CA39中国河南 Henan, ChinaS65.6Ppo-A1aPpo-D1aPsy-A1a
13CA38中国河南 Henan, ChinaM67.7Ppo-A1bPpo-D1bPsy-A1a
13CA39中国河南 Henan, ChinaW68.1Ppo-A1bPpo-D1bPsy-A1a+
13CA47中国河南 Henan, ChinaM66.5Ppo-A1bPpo-D1bPsy-A1a
13CA48中国河南 Henan, ChinaS65.8Ppo-A1bPpo-D1bPsy-A1a
13CA66中国河南 Henan, ChinaS68.3Ppo-A1aPpo-D1bPsy-A1a
新麦26 Xinmai 26中国河南 Henan, ChinaS63.2Ppo-A1bPpo-D1bPsy-A1a
新麦28 Xinmai 28中国河南 Henan, ChinaS65.9Ppo-A1aPpo-D1aPsy-A1b
丰德存麦5号 Fengdecunmai 5中国河南 Henan, ChinaM66.4Ppo-A1aPpo-D1bPsy-A1a
周麦24 Zhoumai 24中国河南 Henan, ChinaS64.4Ppo-A1aPpo-D1bPsy-A1b+
周麦26 Zhoumai 26中国河南 Henan, ChinaW70.9Ppo-A1aPpo-D1aPsy-A1b+
周麦32 Zhoumai 32中国河南 Henan, ChinaM66.3Ppo-A1aPpo-D1aPsy-A1b+
西农509 Xinong 509中国陕西 Shaanxi, ChinaS66.7Ppo-A1aPpo-D1aPsy-A1a+
西农979 Xinong 979中国陕西 Shaanxi, ChinaS62.9Ppo-A1bPpo-D1bPsy-A1b
武农986 Wunong 986中国陕西 Shaanxi, ChinaM66.7Ppo-A1bPpo-D1bPsy-A1b
陕627 Shaan 627中国陕西 Shaanxi, ChinaM67.3Ppo-A1aPpo-D1bPsy-A1a+
舜麦1718 Shunmai 1718中国山西 Shanxi, ChinaS65.7Ppo-A1bPpo-D1aPsy-A1a
Jagger美国 USAS60.9Ppo-A1aPpo-D1bPsy-A1a
Karl美国 USAS63.5Ppo-A1aPpo-D1aPsy-A1a
Baxter澳大利亚 AustraliaS65.9Ppo-A1aPpo-D1bPsy-A1b
Livingston澳大利亚 AustraliaM66.6Ppo-A1aPpo-D1bPsy-A1b
Ellison澳大利亚 AustraliaS68.4Ppo-A1aPpo-D1aPsy-A1a
Sunzell澳大利亚 AustraliaS71.4Ppo-A1aPpo-D1bPsy-A1a
1) High-yield control cultivars are underlined, cultivars developed during 1990-2010 are in bond, and other domestic cultivars were developed since 2011. All exotic accessions are representative high-quality cultivars. 2) Gluten strength is divided into strong (S, peak integral ≥ 135), middle (M, 100 ≤ peak integral < 135) and weak gluten (W, peak integral < 100) according to Mixograph parameter peak integral (in %tq× min). 3) + and - indicate 1BL/1RS and non-1BL/1RS line, respectively.
1) 下画线表示高产对照品种, 加粗体表示1990-2010年育成品种, 其他国内品种为2011年及其以后育成; 国外品种均为代表性优质品种。2) 根据和面仪峰值面积(单位: %tq × min), 面筋强度分为强筋(S, 峰值面积 ≥ 135)、中筋(M, 100 ≤ 峰值面积 < 135)和弱筋(W, 峰值面积< 100)。3) +和-分别表示1BL/1RS易位系和非1BL/1RS易位系。

表1 58份小麦品种来源、面筋类型、面条评分及分子标记检测结果 Table 1 Origin, gluten type, noodle score, and molecular marker results in 58 wheat cultivars

1.2 品质参数测定方法用单籽粒谷物特性测试仪(SKCS 4100 Perten Instruments AB, Sweden)测定籽粒硬度。用近红外(NIR)分析仪(Foss 1241, Sweden)测定籽粒蛋白质含量(14%湿基)和水分。根据硬度值确定润麦目标水分, 硬质麦水分为16.5%, 混合麦为15.5%, 润麦16~ 18 h, 用Senior实验磨(Brabender, Germany)制粉, 出粉率为65%左右。
用Minolta CR-310色度仪(Minolta Camera Co., Ltd., Japan)测定面粉L* 值、a* 值和b* 值。参照AACC 14-50 (AACC 2000)方法, 稍作修改, 测定黄色素含量, 即用水饱和正丁醇溶液提取后比色测定, 称样量为1 g, 提取液为5 mL, 振荡时间为1 h, 测吸光度乘以常数30.1即为结果。参照Anderson等[26]的方法, 稍作修改, 测定PPO活性, 即称样量1 g, 提取液7.5 mL, 振荡时间0.5 h。
用和面仪Mixograph (National, America), 按AACC 54-40A方法测定和面仪参数。用混合实验仪Mixolab (Chopi Technologies, France)按操作手册测定主要参数, 包括吸水率(面粉形成面团所需的适宜加水量)、形成时间(面粉从加水至曲线峰高所需时间)、稳定时间(面粉从加水至曲线第一次离开1.05 Nm标线所需时间)、C2值(面团加热后的蛋白质弱化值)、C3值(面团加热过程中的淀粉糊化峰值)、C4值(淀粉糊化低谷值)、C5值(面团冷却过程中的淀粉糊化最终值)。参照阎俊等[27]描述的方法, 用快速黏度分析仪(Super 3, Newport, Australia)测定淀粉糊化特性, 反应液参数修改为170 mg L-1 AgNO3溶液25 mL。
面条制作与品质评价, 参照张艳等[28]方法, 评分系统为色泽15分、表观状况10分、软硬度20分、黏弹性30分、光滑性15分、食味10分, 即总分为100分。以面条品质较好的商业面粉雪花粉(70分)为对照样品, 将面条品质分为较好(≥ 70分)、一般(60.0~69.9分)和较差(< 60分)三类。
1.3 基因组DNA提取及分子标记分析从每个品种选3粒大小均匀的种子, 粉碎后放入1.5 mL离心管, 按Lagudah等[29]描述的方法提取籽粒基因组DNA。利用特异性分子标记(表2)检测Ppo-A1Ppo-D1Psy-A1的等位变异及1BL/1RS易位系。PCR体系20 μ L, 含20 mmol L-1 Tris-HCl (pH 8.4)、20 mmol L-1 KCl、150 μ mol L-1 dNTPs、1.5 mmol L-1 MgCl2、每条引物8 pmol、TaqDNA聚合酶1 U、模板DNA 50 ng。PCR程序见表1。扩增产物经1.5%琼脂糖凝胶电泳分离检测, 缓冲液体系为1× TAE, 电压180 V, 电泳30 min。用溴化乙锭(EB)染色, GelDoc XR System (Bio-Rad, America)扫描成像存入计算机。根据DNA检测结果判断品种基因型。
表2
Table 2
表2(Table 2)
表2 基因特异性标记引物及扩增信息 Table 2 Primers and amplification of gene-specific markers
位点
Locus
标记
Marker
引物序列
Primer sequence (5′ -3′ )
片段大小
Fragment size (bp)
等位变异
Allele
参考文献
Reference
Ppo-A1PPO18F: AACTGCTGGCTCTTCTTCCCA
R: AAGAAGTTGCCCATGTCCGC
685/876Ppo-A1a/Ppo-A1bSun et al. [15]
Ppo-D1PPO16F: TGCTGACCGACCTTGACTCC
R: CTCGTCACCGTCACCCGTAT
713Ppo-D1aHe et al. [16]
PPO29F: TGAAGCTGCCGGTCATCTAC
R: AAGTTGCCCATGTCCTCGCC
490Ppo-D1bHe et al. [16]
Psy-A1YP7AF: GGACCTTGCTGATGACCGAG
R: TGACGGTCTGAAGTGAGAATGA
194/231Psy-A1a/Psy-A1bHe et al. [17]
1BL/1RSH20F: GTTGGAAGGGAGCTCGAGCTG
R: GTTGGGCAGAAAGGTCGACATC
15981BL/1RSCheng et al. [20]

表2 基因特异性标记引物及扩增信息 Table 2 Primers and amplification of gene-specific markers

1.4 统计分析方法用Microsoft Excel 2010整理数据和作图, 用SAS (Statistical Analysis System) V9.2软件进行方差分析、基本统计量计算及品质性状间相关分析, 并对不同基因型品质性状进行多重比较(Duncan’ s)。

2 结果与分析2.1 品种的品质性状方差分析表明, 所有品质性状基因型和环境间均差异显著(P< 0.01); 除出粉率、面粉L* 值、混合实验仪C3值外, 其他性状基因型× 环境互作间均差异显著(P< 0.01), 但磨粉品质、面粉颜色相关性状、和面仪与混合实验仪参数、淀粉特性参数、面条品质性状(除面条表观状况和食味)基因型与基因型× 环境互作均方的比值(> 1.5)较高, 说明品质性状受基因型、环境及基因型× 环境互作的共同影响, 但基因型效应远大于基因型× 环境互作。
表3表3可知, 供试材料的籽粒硬度均值为67.7, 其中54份为硬质麦(硬度值≥ 60), 中麦629、中麦895、周麦26和周麦24为混合麦(40≤ 硬度值< 60)。出粉率变幅为57.8%~68.1%, 其中13CA66、农大3753、中优206和中麦1062出粉率较高, 达到67%以上。品种间面粉a* 值、b* 值、黄色素含量和PPO活性差异较大, 变异系数为14.3%~ 27.8%。黄色素含量较低的品种包括西农979、武农986、Livingston, 黄色素含量较高的品种包括西农509、中麦895; PPO活性较低的品种包括藁城8901、师栾02-1, PPO活性较高的品种包括周麦26、中麦895。
品种间和面仪参数差异均较大, 变异系数为26.4%~73.0%。按照和面仪峰值面积划分, 34份为强筋类型(峰值面积≥ 135 %tq× min), 17份为中筋类型(100 %tq× min≤ 峰值面积< 135 %tq× min), 7份为弱筋类型(峰值面积< 100 %tq× min)。品种间混合实验仪形成时间和稳定时间差异较大, 变异系数分别为 26.2%和22.9%。RVA参数仅稀澥值在品种间差异较大, 变异系数为15.4%。根据和面仪峰值面积, 面筋强度较好(峰值面积≥ 180 %tq× min)的品种包括济麦0860229、师栾02-1、新麦26、13CA66、Karl、西农509、GY12014、周麦24、中优206、12品404, 面筋强度较弱(峰值面积< 70 %tq× min)的品种包括中麦895、周麦26、石4185。RVA峰值黏度较高(峰值黏度> 3300 cP)的品种包括郑麦366、周麦24、Sunzell、新麦26、周麦32、12品404、郑5373、山农11-28、新麦28。其中济麦0860229、13CA66、西农509、GY12014、12品404的峰值面积接近或好于1990— 2010年育成的品种师栾02-1、新麦26、周麦24、中优206 及国外品种Karl; 周麦32、12品404、郑5373、山农11-28、新麦28的峰值黏度接近郑麦366、周麦24、新麦26及Sunzell。
品种间面条品质性状差异均较小, 总分变幅为60.9~71.4, 其中面条品质较好的品种(总分≥ 70)包括Sunzell (71.4分)、石优17 (71.0分)、郑麦366 (70.9分)、中麦895 (70.9分)、周麦26 (70.9分)、CA1004 (70.7分)和石4185 (70.3分), 其余品种面条品质总分为60.0~69.9。根据面条总分, 中麦895、周麦26、CA1004接近1990— 2010年育成品种郑麦366、石优17及国外品种Sunzell。
综上所述, 供试品种大部分属于硬质、中强筋类型, 品种间籽粒硬度、蛋白质含量、淀粉糊化参数(除稀澥值外)和面条品质差异较小, 出粉率、面粉a* 值、b* 值、黄色素含量、PPO活性、和面仪参数、混合实验仪形成时间和稳定时间差异较大。
表3
Table 3
表3(Table 3)
表3 供试品种品质性状均值、变幅和变异系数 Table 3 Mean, range, and coefficient of variation of quality parameters in tested cultivars
品质参数Quality parameter均值Mean变幅Range变异系数CV(%)
磨粉品质 Milling quality
籽粒硬度 Grain hardness67.752.7 to 81.89.5
蛋白质含量 Protein content (%)14.813.0 to 17.55.9
出粉率 Flour yield (%)63.557.8 to 68.13.6
面粉颜色Flour color
面粉L* 值 Flour L* value91.390.7 to 92.00.3
面粉a* 值 Flour a* value-1.0-1.7 to -0.527.8
面粉b* 值 Flour b* value9.16.9 to 12.514.7
黄色素含量Yellow pigment content (mg kg-1)1.20.7 to 2.327.0
PPO 活性 PPO activity (U min-1g-1)4.43.0 to 6.618.4
和面仪参数 Mixograph parameter
峰值时间 Peak time (min)3.91.6 to 6.327.3
峰值面积 Peak integral (%tq× min)143.256.2 to 228.826.4
衰落势 Right of peak slope-2.1-8.3 to -0.173.0
8 min带宽 Width at 8 min (mm)9.43.0 to 17.835.6
混合实验仪参数 Mixolab parameter
吸水率 Water absorption (%)60.056.3 to 65.73.9
形成时间 Development time (min)6.72.1 to 9.726.2
稳定时间 Stability (min)9.42.8 to 12.222.9
C2 (Nm)0.60.4 to 0.711.4
C3 (Nm)1.91.2 to 2.211.6
C4 (Nm)2.11.8 to 2.35.6
C5 (Nm)3.42.6 to 4.07.6
快速黏度仪参数 RVA parameter
峰值黏度 Peak viscosity (cP)3050.82595.5 to 3770.08.5
低谷黏度 Through viscosity (cP)2270.61916.1 to 2785.88.3
稀澥值 Breakdown (cP)780.3521.6 to 1066.115.4
最终黏度 Final viscosity (cP)3796.33415.4 to 4313.16.0
反弹值 Setback (cP)1525.71272.1 to 1853.89.3
面条品质 Noodle quality
色泽 Color9.47.7 to 11.16.9
表观状况 Appearance7.56.7 to 7.93.5
软硬度 Firmness12.711.3 to 14.56.7
黏弹性 Viscoelasicity18.817.1 to 21.95.4
光滑性 Smoothness10.29.0 to 11.75.7
食味 Taste7.87.5 to 8.32.1
总分 Total score66.360.9 to 71.43.5

表3 供试品种品质性状均值、变幅和变异系数 Table 3 Mean, range, and coefficient of variation of quality parameters in tested cultivars

2.2 品质性状间相关分析2.2.1 面粉颜色性状间相关分析 相关分析表明, 面粉b* 值与黄色素含量呈极显著正相关, r值为0.94, 可解释黄色素含量变异88.4% (图1)。面粉L* 值与PPO活性呈极显著正相关, r值为0.50, 可解释PPO活性变异24.9%。说明面粉颜色受黄色素含量和PPO活性影响较大。由于面粉b* 值测定简单易行, 稳定性好, 因此其可作为预测黄色素含量的有效指标。
2.2.2 影响面条品质的因素分析 由表4可知, 面条食味与面粉a* 值、b* 值和黄色素含量极显著相关, r值分别为-0.71、0.61和0.66; 面条软硬度与峰值时间、峰值面积、衰落势、8 min带宽、形成时间
图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 面粉b* 值与黄色素含量的关系Fig. 1 Relationship between flour b* value and yellow pigment content

和稳定时间呈极显著负相关, r值为-0.73 ~ -0.56, 其中衰落势、8 min带宽和稳定时间分别解释面条软硬度变异的45.7%、53.7%和47.5% (图2-A, C, E); 面条光滑性与籽粒硬度、峰值面积、衰落势、8 min带宽、稳定时间和C2值呈极显著负相关, r值为-0.63 ~ -0.51; 面条总分与衰落势、8 min带宽、形成时间和稳定时间呈极显著负相关, r值为-0.59~-0.53, 其中8 min带宽和稳定时间分别解释面条总分变异的33.3%和34.4% (图2-D, F); 面条黏弹性与峰值黏度和低谷黏度呈极显著正相关, r值分别为0.59和0.53, 峰值黏度可解释面条黏弹性变异的34.9% (图2-B)。说明面筋强度对面条软硬度、光滑性和总分有显著负向影响, 淀粉特性对面条黏弹性有显著正向影响。
表4
Table 4
表4(Table 4)
表4 磨粉品质、面团特性、淀粉品质与面条品质的相关性 Table 4 Correlation coefficients among milling quality, dough characteristics, starch quality, and noodle quality
品质参数
Quality parameter
颜色
Color
表观状况
Appearance
软硬度
Firmness
黏弹性
Viscoelasicity
光滑性
Smoothness
食味
Taste
总分
Total score
磨粉品质 Milling quality
籽粒硬度 Grain hardness0.020.24-0.46* * -0.40* * -0.51* * -0.16-0.44* *
蛋白质含量 Protein content-0.41* * 0.42* * -0.27* -0.14-0.05-0.21-0.25
面粉颜色 Flour color
面粉a* 值 Flour a* value-0.40* * 0.17-0.18-0.25-0.30* -0.71* * -0.40* *
面粉b* 值 Flour b* value0.260.090.090.150.190.61* * 0.36* *
黄色素含量 Yellow pigment content0.22-0.080.150.35* * 0.230.66* * 0.25
PPO活性 PPO activity0.03-0.41* * 0.38* * 0.32* 0.37* * 0.060.34* *
和面仪参数 Mixograph parameter
峰值时间 Peak time-0.29* 0.33* -0.56* * -0.21-0.48* * -0.05-0.46* *
峰值面积 Peak integral-0.31* 0.34* * -0.58* * -0.22-0.51* * -0.11-0.49* *
衰落势 Right of peak slope-0.050.37* * -0.68* * -0.41* * -0.63* * -0.08-0.56* *
8 min带宽 Width at 8 min-0.250.37* * -0.73* * -0.30* -0.57* * -0.13-0.58* *
混合实验仪参数 Mixolab parameter
形成时间 Development time-0.37* * 0.43* * -0.60* * -0.27* -0.48* * -0.26-0.53* *
稳定时间 Stability-0.190.45* * -0.69* * -0.40* * -0.59* * 0.15-0.59* *
C2-0.030.21-0.46* * -0.37* * -0.55* * -0.07-0.45* *
C30.100.17-0.34* * -0.33* -0.42* * 0.10-0.32*
快速黏度仪参数 RVA parameter
峰值黏度 Peak viscosity-0.14-0.37* * 0.110.59* * 0.22-0.120.26*
低谷黏度 Through viscosity-0.18-0.36* * 0.140.53* * 0.20-0.150.23
稀澥值 Breakdown0.01-0.25* 0.010.45* * 0.160.030.20
最终黏度 Final viscosity-0.01-0.50* * 0.100.44* * 0.11-0.060.19
Flour yield, flour L* value, Mixolab parameters water absorption, C4, C5, and setback were not involved because they were not correlated with noodle quality. * and * * indicate correlation at the 0.05 and 0.01 probability level, respectively.
出粉率、面粉L* 值、混合实验仪吸水率、C4、C5、反弹值与面条品质不相关, 未列出。* * * 分别表示在0.05和0.01概率水平相关。

表4 磨粉品质、面团特性、淀粉品质与面条品质的相关性 Table 4 Correlation coefficients among milling quality, dough characteristics, starch quality, and noodle quality

2.3 不同基因型对品质性状的影响在58份材料中, Ppo-A1aPpo-A1b基因型分别为24份和34份, 频率分别为41.4%和58.6%, 基因型间PPO活性差异显著; Ppo-D1aPpo-D1b基因型分别为30份(51.7%)和28份(48.3%), 基因型间PPO活性差异不显著, 说明供试品种PPO活性受Ppo-D1影响较小。Psy-A1aPsy-A1b基因型分别为47份和11份, 频率分别为81.0%和19.0%, 基因型间黄色素含量、面粉b* 值差异显著(表5)。
2.4 1BL/1RS易位对籽粒品质性状和面条品质的影响58份供试品种中50份为非1BL/1RS易位系, 占86.2%; 8份为1BL/1RS易位系, 主要分布在黄淮南片, 多为周麦号品种或其后代。1BL/1RS易位系的籽粒硬度、出粉率、衰落势、8 min带宽和稳定时间显著低于非1BL/1RS易位系, 而面粉L* 值、黄色素含量、PPO活性和淀粉糊化参数(除稀澥值外)显著高于非1BL/1RS易位系(表6)。这说明1BL/1RS易位对籽粒硬度、出粉率和面筋强度有显著负向影响, 对面粉L* 值、黄色素含量、PPO活性和淀粉特性有显著正向影响。
总体来看, 1BL/1RS易位系和非1BL/1RS易位系的面条品质差异显著。这种差异主要体现在1BL/1RS易位系品种的面条表观状况显著低于非1BL/1RS易位系品种, 软硬度、黏弹性、光滑性和总分显著高于非1BL/1RS易位系品种, 而面条颜色和食味差异不显著(表7)。说明供试品种中, 1BL/1RS易位对面条表观有显著负向影响, 对面条口感质地及总分有显著正向影响。
图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 面团品质与面条品质的关系Fig. 2 Relationship between dough quality and noodle quality

表5
Table 5
表5(Table 5)
表5 不同基因型间PPO活性、黄色素含量及面粉b* 值比较 Table 5 Comparisons of PPO activity, yellow pigment content, and flour b* value between genotypes
基因型Genotype标记Marker品种数No. of cultivars频率Frequency (%)变化范围Range平均值Mean
PPO活性 PPO activity (U min-1g-1)
Ppo-A1aPPO182441.43.6-6.64.9 a
Ppo-A1b3458.63.0-5.04.1 b
Ppo-D1aPPO163051.73.0-6.64.4 a
Ppo-D1bPPO292848.33.0-6.04.4 a
黄色素含量 Yellow pigment content (mg kg-1)
Psy-A1aYP7A4781.00.9-2.31.3 a
Psy-A1b1119.00.7-1.61.0 b
面粉b* 值 Flour b* value
Psy-A1aYP7A4781.07.1-12.59.4 a
Psy-A1b1119.06.9-9.87.7 b
Values followed by different letters are significantly different between genotypes (P< 0.05).
标以不同字母的平均值在基因型间差异显著(P < 0.05)。

表5 不同基因型间PPO活性、黄色素含量及面粉b* 值比较 Table 5 Comparisons of PPO activity, yellow pigment content, and flour b* value between genotypes

表6
Table 6
表6(Table 6)
表6 1BL/1RS易位和非1BL/1RS易位品种籽粒品质性状比较 Table 6 Comparisons of quality traits between 1BL/1RS and non-1BL/1RS cultivars
性状Trait1BL/1RSNon-1BL/1RS性状Trait1BL/1RSNon-1BL/1RS
籽粒硬度Grain hardness60.5 b68.8 a吸水率Water absorption (%)58.8 a60.2 a
籽粒蛋白含量 Kernel protein (%)14.6 a14.8 a形成时间Development time (min)5.7 a6.9 a
出粉率 Flour yield (%)61.7 b63.8 a稳定时间 Stability (min)7.8 b9.7 a
面粉L* 值 Flour L* value91.5 a91.3 bC2 (Nm)0.5 a0.6 a
面粉a* 值 Flour a* value-1.1 a-1.1 aC3 (Nm)1.7 a1.8 a
面粉b* 值 Flour b* value9.3 a9.1 aC4 (Nm)2.1 a2.1 a
黄色素含量 Yellow pigment content (mg kg-1)1.3 a1.2 bC5 (Nm)3.4 a3.4 a
PPO活性 PPO activity (U min-1 g-1)5.8 a4.2 b峰值黏度 Peak viscosity (cP)3252.6 a3018.6 b
峰值时间 Peak time (min)3.5 a4.0 a低谷黏度 Through viscosity (cP)2397.4 a2250.3 b
峰值面积 Peak integral (%tq× min)124.0 a146.3 a稀澥值 Breakdown (cP)855.2 a768.3 a
衰落势 Right of peak slope-3.6 b-1.9 a最终黏度 Final viscosity (cP)4025.9 a3759.5 b
8 min带宽 Width at 8 min (mm)5.8 b10.0 a反弹值 Setback (cP)1628.5 a1509.2 b
Values followed by different letters are significantly different between genotypes (P< 0.05).
标以不同字母的平均值在基因型间差异显著(P < 0.05)。

表6 1BL/1RS易位和非1BL/1RS易位品种籽粒品质性状比较 Table 6 Comparisons of quality traits between 1BL/1RS and non-1BL/1RS cultivars

表7
Table 7
表7(Table 7)
表7 1BL/1RS易位和非1BL/1RS易位品种面条品质性状比较 Table 7 Comparisons of noodle quality traits between 1BL/1RS and non-1BL/1RS cultivars
基因型
Genotype
颜色
Color
表观状况
Appearance
软硬度
Firmness
黏弹性
Viscoelasicity
光滑性
Smoothness
食味
Taste
总分
Total score
1BL/1RS9.18 a7.21 b13.40 a19.63 a10.75 a7.83 a67.99 a
Non-1BL/1RS9.39 a7.52 a12.64 b18.65 b10.10 b7.82 a66.08 b
Values followed by different letters are significantly different between genotypes (P< 0.05).
标以不同字母的平均值在基因型间差异显著(P < 0.05)。

表7 1BL/1RS易位和非1BL/1RS易位品种面条品质性状比较 Table 7 Comparisons of noodle quality traits between 1BL/1RS and non-1BL/1RS cultivars


3 讨论58份供试品种间籽粒硬度、蛋白质含量、淀粉糊化参数和面条品质差异较小, 出粉率、面粉a* 值、b* 值、黄色素含量、PPO活性、和面仪参数、混合实验仪形成时间和稳定时间差异较大。品种间差异
主要表现在面筋强度和面粉颜色, 且品种淀粉糊化特性普遍偏差, 主要原因是我国育种家选择优质品种时以面筋强度为主要依据, 对淀粉特性考虑较少。因此, 今后在注重面筋质量(尤其是延展性)改良同时, 应加强色泽和淀粉特性选择。在供试材料中, 藁优2018与济麦20的品质特征参数基本一致, 且所携带基因型(Ppo-A1bPpo-D1aPsy-A1a、非1BL/1RS)完全一致, 推测藁优2018为济麦20选系, 育种单位所提供的信息有误, 这与田间观察结果一致。品种间面条品质差异较小, 2010年以后育成品种中麦895、周麦26、CA1004制作的面条软硬度、黏弹性和光滑性较好, 因而面条品质评分较高, 但总分略低于1990— 2010年育成的石优17、郑麦366及国外优质品种Sunzell。唐建卫等[7]研究表明, 济麦20面包、面条和馒头品质均较好, 郑麦366面包、面条品质较好; Zhang等[25]报道, 济麦20面条品质较好, 豫麦34面条、馒头品质较好; 杨金等[30]则提出豫麦34为面包面条兼用品种。在本研究中, 郑麦366也表现面条品质较好, 但济麦20和豫麦34则面条品质一般, 主要原因是黏弹性较差。
面粉及面制品颜色的形成受色素类物质、氧化还原酶类、磨粉品质等因素影响。本文的面粉b* 值与黄色素含量呈极显著相关, r值为0.94, 与Zhang等[31]、Roncallo等[32]、Zhai等[33]的研究结果基本一致。说明黄色素含量对面粉颜色有显著负向影响, 因此以面条和馒头为主要产品时, 应降低黄色素含量。PPO活性随出粉率、麸星含量的提高而提高[34, 35, 36], 葛秀秀等[37]认为面粉L* 值与PPO活性呈极显著负相关, 但本研究面粉L* 值与PPO活性呈极显著正相关(r = 0.50), 可能是所用实验磨不同致使出粉率和麸星含量不同造成的。用基因特异性标记能快速鉴定品质性状基因型, 为育种提供了简单易行的鉴定方法。本研究PPO18、YP7A标记分别能有效反映品种PPO活性、黄色素含量与面粉b* 值, 因此根据其基因型选配亲本, 并利用标记在育种早代选择, 可加速面制品颜色的改良。至于面粉黄色素含量、a* 值、b* 值与面条食味的关系还有待进一步研究。
面条品质改良已成为我国育种的主要目标[14]。本文的面粉a* 值、衰落势、8 min带宽、稳定时间、C2值、峰值黏度对面条品质均有显著影响, 与前人研究结果基本一致, 即面粉色泽、面筋强度和淀粉特性对面条品质有显著影响[6, 9, 10, 11, 12, 13, 14]。Liu等[13]和He等[14]认为面筋强度过强对面条品质有负向影响, 本研究和面仪参数、混合实验仪参数与面条软硬度、总分呈负相关, 主要是因为面筋强度过强使面条硬度较大, 导致适口性较差, 因而软硬度评分和总分较低。Jagger为美国优质面包麦, 过高的面筋强度导致面条软硬度分值较低, 因而面条品质一般偏差。RVA峰值黏度与面条黏弹性呈极显著正相关, 可解释变异34.9%, 我国品种的淀粉峰值黏度急需改进, 可用峰值黏度较高的品种Sunzell和郑麦366等作为杂交亲本。周麦26和中麦895的面筋强度弱, 且为1BL/1RS易位系, 但面条品质优良, 其原因有待进一步研究。
1BL/1RS易位系的利用导致我国小麦品质变劣, 主要表现在面筋质量变差、面团发黏与耐揉性减弱、加工品质变劣、烘焙品质变差[22, 24]。本研究1BL/1RS易位对面筋强度有显著负向影响, 与刘建军等[22]结论一致。因此, 选育中、强筋品种一般不宜采用1BL/1RS易位品种作为杂交亲本, 或至少其中一个亲本为非1BL/1RS易位品种。Zhang等[31]发现一个与1BL/1RS连锁的黄色素含量主效QTL, 可解释31.9%表型变异; Zhai等[33]在1RS上定位到黄色素含量QTL, 可解释32.2%表型变异。本研究的1BL/1RS易位对黄色素含量有显著正向影响, 与He等[17]结论一致, 说明1BL/1RS易位能显著提高黄色素含量。Zhao等[38]表明1BL/1RS易位能显著降低籽粒硬度, 本研究也证明了这一点, 而刘建军等[22]、Amiour等[39]认为1BL/1RS易位对籽粒硬度影响不显著, 有关1BL/1RS易位对籽粒硬度的影响还有待进一步研究。此外, 1BL/1RS易位对面条品质也有一定影响。本研究1BL/1RS易位对面条表观状况有显著负向影响, 对面条软硬度、黏弹性、光滑性和总分有显著正向影响, 且1BL/1RS易位使面筋强度有显著负向影响。说明面筋强度与面条表观状况呈正相关, 与面条软硬度、黏弹性、光滑性和总分呈负相关, 与前文面条品质影响因素分析结果吻合, 但与刘建军等[22]、He等[24]结论不一致, 可能是1BL/ 1RS易位与非易位品种数目差异较大和未知的遗传因素造成的, 有待进一步分析验证。有关粉质仪和拉伸仪参数、蛋白组分含量及面包、馒头方面的研究将在另文中报道。
4 结论明确了北方冬麦区新育成品种(系)的品质特征及其携带的部分品质基因, 和面仪8 min带宽和混合实验仪稳定时间可作为预测面条品质的重要指标, 明确了58份材料黄色素含量、PPO活性基因型和1BL/1RS易位分布及其对品质性状的影响。
表1
Supplementary table 1
表1(Supplementary table 1)
表1 引物PCR 程序 Supplementary table 1 PCR condition for the primers
标记
Marker
预变性
Predenaturation
变性
Denaturation
退火
Annealing
延伸
Extension
循环数
Cycle No.
最后延伸
Final extension
PPO1894℃, 5 min94℃, 60 s65℃, 60 s72℃, 60 s3672℃, 8 min
PPO1695℃, 5 min95℃, 30 s66-54 (↓ 0.3)℃, 30 s72℃, 60 s4072℃, 5 min
PPO2995℃, 5 min95℃, 30 s68℃, 30 s72℃, 40 s3572℃, 5 min
YP7A95℃, 5 min95℃, 30 s65℃, 30 s72℃, 30 s3572℃, 5 min
H2094℃, 5 min95℃, 60 s60℃, 60 s72℃, 120 s4572℃, 10 min
PCR 程序的参考文献见表1.
The references of PCR program were shown in Table 1.

表1 引物PCR 程序 Supplementary table 1 PCR condition for the primers

表2
Supplementary table 2
表2(Supplementary table 2)
表2 58 份小麦品种在4 个环境下磨粉品质和面粉颜色相关性状的平均值 Supplementary table 2 Average traits values related to milling quality and flour color in 58 wheat cultivars over four growing environments
品种
Cultivar
籽粒硬度
Grain
hardness
蛋白质含量
Protein
content (%)
出粉率
Flour yield
(%)
黄色素含量
Yellow pigment
content (mg kg-1)
PPO活性
PPO activity
(U min-1g-1)
L* 值
L* value
a* 值
a* value
b* 值
b* value
中优206 Zhongyou 20667.015.167.81.54.190.9-1.210.4
中麦996 Zhongmai 99667.014.065.01.64.090.8-1.411.1
中麦998 Zhongmai 99871.813.865.81.53.891.0-1.310.7
中麦629 Zhongmai 62958.715.465.90.95.391.3-0.88.3
中麦1062 Zhongmai 106265.313.767.31.53.590.8-1.310.8
CA049363.615.966.31.73.591.0-1.411.2
CA100466.515.463.41.83.790.8-1.612.0
农大3615 Nongda 361557.717.060.41.03.891.1-1.08.6
农大3753 Nongda 375358.715.167.81.24.291.0-1.19.1
农大5363 Nongda 536352.717.564.71.34.390.7-1.19.7
GY1201468.015.564.11.13.691.2-0.99.0
GY1202368.715.263.81.13.891.4-0.98.7
师栾02-1 Shiluan 02-179.015.561.61.13.091.0-0.99.0
石优17 Shiyou 1762.213.065.91.35.191.5-1.39.3
石优20 Shiyou 2068.813.661.71.14.691.5-1.08.5
藁优2018 Gaoyou 201865.914.764.21.23.791.6-1.29.2
藁城8901 Gaocheng 890175.715.460.60.93.090.9-0.68.1
石4185 Shi 418564.514.164.31.14.691.5-0.98.5
济南17 Jinan 1777.114.062.20.94.091.3-0.88.1
济麦20 Jimai 2068.814.564.31.23.991.6-1.29.4
济麦22 Jimai 2271.914.064.81.34.191.4-1.29.7
济麦23 Jimai 2373.715.063.51.44.591.2-1.210.2
济麦24 Jimai 2471.114.863.91.04.691.2-1.08.8
济麦0860229 Jimai 086022981.814.462.01.53.491.4-1.29.9
12品404 12-Pin-40472.716.057.81.03.391.3-0.88.5
洲元9369 Zhouyuan 936974.614.865.41.04.791.4-0.88.3
山农11-28 Shannong 11-2865.014.860.31.06.092.0-0.97.5
郑麦366 Zhengmai 36669.914.663.51.53.991.2-1.210.2
郑麦129 Zhengmai 12971.114.162.01.24.391.4-1.29.7
郑5373 Zheng 537368.614.059.70.95.191.6-0.77.1
豫麦34 Yumai 3458.414.660.40.95.291.7-0.77.1
中麦895 Zhongmai 89559.214.460.62.26.191.3-1.712.0
中优255 Zhongyou 25569.915.564.81.24.391.3-1.09.1
12CA2567.215.464.81.33.591.5-1.19.4
12CA2968.014.864.41.14.191.4-1.08.9
12CA3967.814.562.91.24.891.5-1.09.0
13CA3858.913.965.81.05.091.3-0.88.0
13CA3961.814.164.11.44.991.2-1.09.2
13CA4765.113.264.40.94.891.3-0.77.9
13CA4869.313.763.10.94.491.3-0.77.7
13CA6666.515.068.11.53.991.2-1.210.3
新麦26 Xinmai 2674.615.359.31.14.791.2-0.88.3
新麦28 Xinmai 2869.515.464.00.94.491.5-0.77.7
丰德存麦5号 Fengdecunmai 562.614.365.91.65.291.3-1.511.0
周麦24 Zhoumai 2456.814.662.01.16.092.0-0.77.3
周麦26 Zhoumai 2657.613.361.41.66.691.7-1.39.8
周麦32 Zhoumai 3255.216.060.41.15.991.6-0.87.7
西农509 Xinong 50964.714.463.82.35.891.0-1.712.5
西农979 Xinong 97976.613.761.50.74.091.5-0.56.9
武农986 Wunong 98668.014.466.10.74.291.4-0.67.1
陕627 Shaan 62763.615.561.11.25.391.4-0.98.5
舜麦1718 Shunmai 171873.214.661.41.55.091.3-1.310.2
Jagger78.716.359.81.83.690.8-1.210.8
Karl73.215.264.11.13.691.4-0.78.0
Baxter70.915.463.20.84.791.5-0.77.7
Livingston72.414.864.90.84.191.4-0.67.4
Ellison73.815.563.91.44.391.3-1.29.8
Sunzell72.214.865.11.23.691.4-1.19.1

表2 58 份小麦品种在4 个环境下磨粉品质和面粉颜色相关性状的平均值 Supplementary table 2 Average traits values related to milling quality and flour color in 58 wheat cultivars over four growing environments

表3
Supplementary table 3
表3(Supplementary table 3)
表3 58 份小麦品种在4 个环境下的和面仪和混合实验仪参数平均值 Supplementary table 3 Average parameters of Mixograph and Mixolab in 58 wheat cultivars over four growing environments
品种
Cultivar
PT
(min)
PI
(%tq× min)
RPST× W
(mm)
WA
(%)
DT
(min)
ST
(min)
C2
(Nm)
C3
(Nm)
C4
(Nm)
C5
(Nm)
中优206 Zhongyou 2065.2181.6-0.612.758.39.211.80.61.82.33.6
中麦996 Zhongmai 9963.5126.0-2.57.358.34.18.80.51.92.33.6
中麦998 Zhongmai 9984.2147.1-1.58.358.76.59.60.62.22.33.6
中麦629 Zhongmai 6292.696.7-3.17.360.54.68.30.62.22.23.1
中麦1062 Zhongmai 10623.5120.1-2.26.658.94.58.40.51.92.23.5
CA04934.5170.2-2.611.360.08.010.00.51.62.13.3
CA10043.5126.5-3.45.260.66.18.20.51.81.92.6
农大3615 Nongda 36152.182.3-4.64.063.23.45.40.41.81.82.9
农大3753 Nongda 37534.0145.2-2.311.359.87.99.60.52.22.23.6
农大5363 Nongda 53632.487.3-4.04.962.45.05.90.51.81.93.1
GY120145.2185.3-1.311.157.98.311.50.62.02.23.6
GY120235.0169.5-0.512.056.37.811.70.62.12.33.9
师栾02-1 Shiluan 02-16.0221.5-1.214.358.78.112.20.61.92.23.7
石优17 Shiyou 173.8137.9-1.27.760.35.39.00.51.92.23.5
石优20 Shiyou 204.1152.8-1.68.159.65.79.60.62.02.13.3
藁优2018 Gaoyou 20183.7132.1-0.710.257.98.111.00.61.92.33.7
藁城8901 Gaocheng 89014.3165.5-2.49.260.96.210.00.61.82.03.3
石4185 Shi 41851.656.2-8.33.058.52.82.80.41.22.03.0
济南17 Jinan 173.0121.1-0.68.963.47.010.10.61.82.03.1
济麦20 Jimai 203.7130.3-1.18.558.37.310.50.61.82.33.8
济麦22 Jimai 222.487.9-2.96.061.44.16.10.51.92.03.2
济麦23 Jimai 232.9108.2-1.39.464.86.19.10.62.02.03.2
济麦24 Jimai 243.0106.5-0.410.964.27.79.80.62.12.13.3
济麦0860229 Jimai 08602296.3228.8-0.716.959.64.312.10.72.02.23.5
12品404 12-Pin-4044.7181.5-0.613.165.79.311.40.62.02.03.2
洲元9369 Zhouyuan 93694.1157.3-2.69.061.17.48.40.51.92.03.2
山农11-28 Shannong 11-283.1119.1-2.77.360.96.07.50.61.82.03.4
郑麦366 Zhengmai 3663.4137.3-1.310.862.97.98.80.51.92.03.1
郑麦129 Zhengmai 1292.6102.7-2.69.265.55.48.20.62.02.03.2
郑5373 Zheng 53734.5165.7-1.49.860.86.59.70.61.82.33.7
豫麦34 Yumai 343.8149.4-3.38.361.66.08.60.61.72.13.2
中麦895 Zhongmai 8951.968.6-6.63.461.23.03.50.52.12.03.1
中优255 Zhongyou 2554.7176.9-1.611.160.38.410.10.61.92.13.4
12CA254.3153.1-1.012.159.27.810.40.62.12.13.5
12CA295.2171.6-0.413.556.58.011.80.62.22.34.0
12CA394.4165.2-1.910.159.48.610.00.62.12.13.5
13CA383.9136.3-3.34.656.86.88.90.51.72.23.6
13CA393.4111.9-5.03.356.84.26.20.51.42.13.2
13CA473.7138.0-2.87.757.46.19.70.51.52.33.7
13CA484.4159.8-1.49.858.47.110.60.51.62.23.7
13CA665.9208.8-0.114.757.27.412.00.61.92.23.6
新麦26 Xinmai 265.2210.0-0.817.864.79.712.00.62.02.13.2
新麦28 Xinmai 284.1156.3-1.710.661.18.49.20.51.82.13.4
丰德存麦5号 Fengdecunmai 53.5130.4-1.68.660.57.48.60.52.02.13.4
周麦24 Zhoumai 245.3182.1-1.09.057.68.511.00.61.82.33.8
周麦26 Zhoumai 261.862.4-5.93.357.92.13.40.41.42.13.3
周麦32 Zhoumai 323.9142.5-2.85.759.27.09.30.61.92.23.5
西农509 Xinong 5095.7187.4-1.88.956.78.510.80.51.52.23.5
西农979 Xinong 9794.1155.4-1.413.163.88.711.10.62.02.23.4
武农986 Wunong 9864.1147.5-2.38.357.98.010.20.61.92.23.7
陕627 Shaan 6273.1117.9-3.35.360.15.97.30.62.02.03.3
舜麦1718 Shunmai 17183.3126.6-1.49.662.56.99.90.61.92.13.3
Jagger4.0149.8-1.013.759.38.011.00.51.42.13.3
Karl5.5202.4-0.713.158.39.011.60.51.92.13.2
Baxter3.1125.0-2.713.260.38.110.10.51.72.23.5
Livingston3.1120.6-2.711.661.07.49.10.51.82.13.3
Ellison3.9145.0-2.410.959.06.510.30.61.72.23.4
Sunzell4.2154.4-1.711.158.06.710.50.51.62.13.4
PT: 峰值时间; PI: 峰值面积; RPS: 衰落势; T×W: 8 min 带宽; WA: 吸水率; DT: 形成时间; ST: 稳定时间。
PT: peak time; PI: peak integral; RPS: right of peak slope; T×W: width at 8 min; WA: water absorption; DT: development time; ST:stability.

表3 58 份小麦品种在4 个环境下的和面仪和混合实验仪参数平均值 Supplementary table 3 Average parameters of Mixograph and Mixolab in 58 wheat cultivars over four growing environments

表4
Supplementary table 4
表4(Supplementary table 4)
表4 58 份小麦品种在4 个环境下淀粉糊化特性参数与面条品质的平均值 Supplementary table 4 Average RVA parameters and noodle quality in 58 wheat cultivars over four growing environments
品种
Cultivar
PV
(cP)
TV
(cP)
BD
(cP)
FV
(cP)
ST
(cP)
面条品质评分 Noodle quality score
CLAPFirVisSmTaTS
中优206 Zhongyou 2063172.32409.5762.83885.41475.99.47.611.918.49.87.964.9
中麦996 Zhongmai 9962970.82330.6640.13937.31606.69.87.513.519.110.27.968.0
中麦998 Zhongmai 9982884.82308.8576.03984.01675.39.77.612.817.69.47.864.8
中麦629 Zhongmai 6292746.32025.6720.63683.91658.39.47.613.917.610.57.666.5
中麦1062 Zhongmai 10622856.02334.4521.63945.81611.410.27.013.018.09.97.966.0
CA04933171.02351.4819.63768.81417.49.07.812.119.910.68.067.4
CA10043171.52319.9851.63818.81498.910.77.414.319.510.98.070.7
农大3615 Nongda 36152801.82010.8791.03621.11610.49.67.912.818.810.87.867.5
农大3753 Nongda 37533258.12389.1869.03943.51554.48.47.111.818.69.87.763.3
农大5363 Nongda 53632814.92009.1805.83558.31549.18.47.513.518.410.17.865.8
GY120142595.52030.1565.43419.91389.89.57.612.418.09.87.865.1
GY120232868.42211.5656.93671.51460.09.37.611.517.69.77.863.5
师栾02-1 Shiluan 02-12771.32098.5672.83415.41316.99.37.612.018.09.47.964.2
石优17 Shiyou 173245.02312.0933.04029.01717.011.17.014.020.110.88.171.0
石优20 Shiyou 203058.42326.9731.53792.31465.49.57.413.018.29.87.965.8
藁优2018 Gaoyou 20183137.92239.5898.43845.41605.910.27.712.818.610.38.067.5
藁城8901 Gaocheng 89012905.42196.0709.43616.01420.08.77.312.518.410.07.564.4
石4185 Shi 41853054.62340.6714.03612.81272.19.07.114.521.011.07.770.3
济南17 Jinan 172799.32094.8704.53566.41471.68.97.312.017.69.67.663.0
济麦20 Jimai 203029.52172.0857.53772.91600.99.97.713.018.610.78.067.9
济麦22 Jimai 222643.91917.6726.33479.31561.610.47.613.117.810.37.967.2
济麦23 Jimai 232769.01918.4850.63623.61705.310.27.611.817.19.78.064.3
济麦24 Jimai 242809.91916.1893.83637.61721.59.77.512.018.49.47.864.7
济麦0860229 Jimai 08602292826.32150.3676.03560.31410.09.87.611.417.69.28.063.5
12品404 12-Pin-4043413.92347.81066.14077.31729.59.07.611.518.69.47.763.7
洲元9369 Zhouyuan 93692677.31932.9744.43424.01491.19.67.812.817.49.87.865.1
山农11-28 Shannong 11-283349.12466.5882.64181.91715.49.67.014.320.310.57.769.3
郑麦366 Zhengmai 3663770.02785.8984.34155.61369.99.57.213.621.910.87.970.9
郑麦129 Zhengmai 1292830.51979.1851.43805.61826.510.57.412.618.610.08.067.1
郑5373 Zheng 53733399.62396.81002.94203.81807.09.07.212.019.99.87.765.5
豫麦34 Yumai 343146.32331.8814.53758.81427.09.37.413.319.79.97.767.3
中麦895 Zhongmai 8953153.92243.8910.14097.51853.89.16.714.321.011.68.370.9
中优255 Zhongyou 2553019.62265.4754.33781.51516.19.27.612.418.810.07.965.8
12CA252717.02069.4647.63478.11408.88.97.811.418.610.27.964.8
12CA292837.92119.9718.03594.51474.69.47.911.518.89.87.965.2
12CA392711.42128.6582.83528.51399.98.97.712.818.410.07.965.6
13CA382979.62306.1673.53690.91384.89.17.713.418.810.88.067.7
13CA392992.52299.9692.63772.51472.69.27.414.118.810.87.868.1
13CA473008.12308.0700.13691.91383.99.47.412.918.910.17.866.5
13CA482976.62277.1699.53681.31404.18.97.612.818.810.17.765.8
13CA663255.02421.0834.03857.31436.38.57.613.020.410.88.068.3
新麦26 Xinmai 263450.12526.3923.94165.01638.88.67.611.318.69.57.663.2
新麦28 Xinmai 283347.12481.9865.33965.61483.89.07.712.918.410.37.665.9
丰德存麦5号 Fengdecunmai 53195.12443.1752.03871.11428.010.07.412.418.610.08.066.4
周麦24 Zhoumai 243638.42659.3979.14313.11653.98.97.112.418.210.07.864.4
周麦26 Zhoumai 263148.02333.9814.13924.01590.110.16.813.920.411.77.970.9
周麦32 Zhoumai 323445.32460.1985.14179.81719.68.97.612.119.510.67.666.3
西农509 Xinong 5093244.12440.1804.03924.81484.68.97.612.619.310.37.966.7
西农979 Xinong 9793049.52295.9753.63900.51604.69.27.212.018.09.07.562.9
武农986 Wunong 9863127.12382.0745.13752.01370.09.37.513.618.410.37.666.7
陕627 Shaan 6273049.12275.5773.63813.41537.98.77.513.519.510.57.667.3
舜麦1718 Shunmai 17183262.02446.9815.14182.91736.09.87.612.418.29.97.865.7
Jagger3171.32450.1721.13886.01435.97.77.311.417.69.57.560.9
Karl3146.12234.3911.93760.41526.18.07.612.318.29.97.663.5
Baxter2844.32154.8689.53482.11327.49.67.812.517.810.57.865.9
Livingston2801.92200.8601.13487.61286.99.07.812.918.610.77.866.6
Ellison2876.52199.6676.93662.61463.09.97.613.118.611.18.168.4
Sunzell3552.32615.3937.03941.61326.410.37.513.820.811.37.871.4
PV: 峰值黏度; TV: 低谷黏度; BD: 稀澥值; FV: 最终黏度; ST: 反弹值; CL: 色泽; AP: 表观状况; Fir: 软硬度; Vis: 黏弹性; Sm: 光滑性; Ta: 食味; TS: 总分。
PV: peak viscosity; TV: through viscosity; BD: breakdown; FV: final viscosity; ST: setback: AP: appearance; Fir: Firmness; Vis: Viscoelasicity; Sm: smoothness; Ta: taste; TS: total score.

表4 58 份小麦品种在4 个环境下淀粉糊化特性参数与面条品质的平均值 Supplementary table 4 Average RVA parameters and noodle quality in 58 wheat cultivars over four growing environments

The authors have declared that no competing interests exist.


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 张勇, 王德森, 夏兰芹, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳. 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006, 39: 1091-1101
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Zhang Y, Wang D S, Xia L Q, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y. Establishment of quality system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin, 2006, 39: 1091-1101 (in Chinese with English abstract)[本文引用:1]
[2]Roncallo P F, Cervigni G L, Jensen C, Mirand a R, Carrera A D, Helguera M, Echenique V. QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012, 185: 77-92[本文引用:1]
[3]蔚然. 面团流变学特性品质分析方法比较与研究. 中国粮油学报, 1998, 13: 10-12
Wei R. A comparitive study on rheological analysers for dough. J Chin Cereals & Oils Assoc, 1998, 13: 10-12 (in Chinese with English abstract)[本文引用:1]
[4]Ozturk S, Kahraman K, Tiftik B, Koksel H. Predicting the cookie quality of flours by using Mixolab. Eur Food Res Technol, 2008, 227: 1549-1554[本文引用:1]
[5]Kahraman K, Sakiyan O, Ozturk S, Koksel H, Sumnu G, Dubat A. Utilization of Mixolab to predict the suitability of flours in terms of cake quality. Eur Food Res Technol, 2008, 227: 565-570[本文引用:1]
[6]张艳, 唐建卫, D’Humieres G, 何中虎. 混合实验仪参数与和面仪、快速黏度仪参数的关系及其对面条品质的影响. 作物学报, 2011, 37: 1441-1448
Zhang Y, Tang J W, D’Humieres G, He Z H. Correlation between Mixolab parameter and Mixograph and RVA parameters and its effect on noodle quality. Acta Agron Sin, 2011, 37: 1441-1448 (in Chinese with English abstract)[本文引用:2]
[7]唐建卫, 刘建军, 张平平, 张艳, 肖永贵, 曲延英, 张勇, 何中虎. 贮藏蛋白组分对小麦面团流变学特性和食品加工品质的影响. 中国农业科学, 2008, 41: 2937-2946
Tang J W, Liu J J, Zhang P P, Zhang Y, Xiao Y G, Qu Y Y, Zhang Y, He Z H. Effects of gluten protein fractions on dough property and products quality in common wheat. Sci Agric Sin, 2008, 41: 2937-2946 (in Chinese with English abstract)[本文引用:3]
[8]张艳, 王彦飞, 陈新民, 王德森, Humieres G D, 冯建军, 何中虎. Mixolab 参数与粉质、拉伸参数及面包烘烤品质的关系. 作物学报, 2009, 35: 1738-1743
Zhang Y, Wang Y F, Chen X M, Wang D S, Humieres G D, Feng J J, He Z H. Relationships of Mixolab parameters with Farinograph, Extensograph parameters, and bread-making quality. Acta Agron Sin, 2009, 35: 1738-1743 (in Chinese with English abstract)[本文引用:1]
[9]雷激, 张艳, 王德森, 阎俊, 何中虎. 中国干白面条品质评价方法研究. 中国农业科学, 2004, 37: 2000-2005
Lei J, Zhang Y, Wang D S, Yan J, He Z H. Methods for evaluation of quality characteristics of dry white Chinese noodles. Sci Agric Sin, 2004, 37: 2000-2005 (in Chinese with English abstract)[本文引用:2]
[10]刘建军, 何中虎, 赵振东, 刘爱峰, 宋建民, Peña R J. 小麦品质性状与干白面条品质参数关系的研究. 作物学报, 2002, 28: 738-742
Liu J J, He Z H, Zhao Z D, Liu A F, Song J M, Peña R J. Investigation on relationship between wheat quality traits and quality parameters of dry white Chinese noodles. Acta Agron Sin, 2002, 28: 738-742 (in Chinese with English abstract)[本文引用:2]
[11]杨金, 张艳, 何中虎, 阎俊, 王德森, 刘建军, 王美芳. 小麦品质性状与面包和面条品质关系分析. 作物学报, 2004, 30: 739-744
Yang J, Zhang Y, He Z H, Yan J, Wang D S, Liu J J, Wang M F. Association between wheat quality traits and performance of pan bread and dry white Chinese noodle. Acta Agron Sin, 2004, 30: 739-744 (in Chinese with English abstract)[本文引用:2]
[12]李硕碧, 单明珠, 王怡, 李必运, 张蜀光. 鲜湿面条专用小麦品种品质的评价. 作物学报, 2001, 27: 334-338
Li S B, Shan M Z, Wang Y, Li B Y, Zhang S G. Evaluation of wheat quality for wet noodle making. Acta Agron Sin, 2001, 27: 334-338 (in Chinese with English abstract)[本文引用:2]
[13]Liu J J, He Z H, Zhao Z D, Peña R J, Rajaram S. Wheat quality traits and quality parameters of cooked dry white Chinese noodles. Euphytica, 2003, 131: 147-154[本文引用:3]
[14]He Z H, Yang J, Zhang Y, Quail K. J, Peña R J. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257-267[本文引用:4]
[15]Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209-218[本文引用:1]
[16]He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58[本文引用:1]
[17]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213-221[本文引用:3]
[18]肖永贵, 何心尧, 刘建军, 孙道杰, 夏先春, 何中虎. 中国冬小麦品种多酚氧化酶活性基因等位变异检测及其分布规律研究. 中国农业科学, 2008, 41: 954-960
Xiao Y G, He X Y, Liu J J, Sun D J, Xia X C, He Z H. Molecular identification and distribution of the polyphenol oxidase genes in Chinese winter wheat cultivars. Sci Agric Sin, 2008, 41: 954-960 (in Chinese with English abstract)[本文引用:1]
[19]杨芳萍, 何心尧, 何中虎, 尚勋武, 杨文雄, 夏先春. 中国小麦品种黄色素含量基因等位变异分子检测及其分布规律研究. 中国农业科学, 2008, 41: 2923-2930
Yang F P, He X Y, He Z H, Sang X W, Yang W X, Xia X C. Molecular detection and distribution of allelic variations of a gene for yellow pigment content in Chinese winter wheat cultivars. Sci Agric Sin, 2008, 41: 2923-2930 (in Chinese with English abstract)[本文引用:1]
[20]Cheng L, Yang Z J, Li G R, Zeng Z X, Zhang Y, Zhou J P, Liu Z H, Ren Z L. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 2008, 159: 249-258[本文引用:1]
[21]Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agric, 2000, 80: 1640-1647[本文引用:1]
[22]刘建军, 何中虎, Peña R J, 赵振东. 1BL/1RS易位对小麦加工品质的影响. 作物学报, 2004, 30: 149-153
Liu J J, He Z H, Peña R J, Zhao Z D. Effect of 1BL/RS translocation on grain quality and noodle quality in breed wheat. Acta Agron Sin, 2004, 30: 149-153 (in Chinese with English abstract)[本文引用:5]
[23]Weightman R M, Millar S, Alava J, Floukes M J, Fish L, Snape J W. Effects of drought and the presence of the 1BL/1RS translocation on grain vitreosity, hardness and protein content in winter wheat. J Cereal Sci, 2008, 47: 457-468[本文引用:1]
[24]He Z H, Liu L, Xia X C, Liu J J, Peña R J. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem, 2005, 82: 345-350[本文引用:3]
[25]Zhang P P, He Z H, Zhang Y, Xia X C, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370-378[本文引用:2]
[26]Anderson J V, Morris C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Sci, 2001, 41: 1697-1705[本文引用:1]
[27]阎俊, 张勇, 何中虎. 小麦品种糊化特性研究. 中国农业科学, 2001, 34: 9-13
Yan J, Zhang Y, He Z H. Investigation on paste property of Chinese wheat. Sci Agric Sin, 2001, 34: 9-13 (in Chinese with English abstract)[本文引用:1]
[28]张艳, 阎俊, Yoshida H, 王德森, 陈东升, Nagamine T, 刘建军, 何中虎. 中国面条的标准化实验室制作与评价方法研究. 麦类作物学报, 2007, 27: 158-165
Zhang Y, Yan J, Yoshida H, Wang D S, Chen D S, Nagamine T, Liu J J, He Z H. Stand ardization of laboratory processing of Chinese white salted noodle and its sensory evaluation system. J Trit Crops, 2007, 27: 158-165 (in Chinese with English abstract)[本文引用:1]
[29]Lagudah E S, Apples R, McNeil D. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome, 1991, 34: 387-395[本文引用:1]
[30]杨金, 张艳, 何中虎, 阎俊, 王德森, 刘建军, 王美芳. 小麦品质性状与面包和面条品质关系分析. 作物学报, 2004, 30: 739-744
Yang J, Zhang Y, He Z H, Yan J, Wang D S, Liu J J, Wang M F. Association between wheat quality traits and performance of pan bread and dry white Chinese noodle. Acta Agron Sin, 2004, 30: 739-744 (in Chinese with English abstract)[本文引用:1]
[31]Zhang Y L, Wu Y P, Xiao Y G, He Z H, Zhang Y, Yan J, Zhang Y, Xia X C, Ma C X. QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica, 2009, 165: 435-444[本文引用:2]
[32]Roncallo P F, Cervigni G L, Jensen C, Mirand a R, Carrera A D, Helguera M, Echenique V. QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012, 185: 77-92[本文引用:1]
[33]Zhai S N, He Z H, Wen W E, Jin H, Liu J D, Zhang Y, Liu Z Y, Xia X C. Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theor Appl Genet, 2016, 129: 377-394[本文引用:2]
[34]Li Y Z, Posner E S. Determination of wheat milling potential and its influence on flour quality deterioration rate. Cereal Chem, 1989, 66: 365-368[本文引用:1]
[35]Takasaki S, Kawakishi S. Effects of polyphenol oxidase activity in wheat flour on protein-bound 5-S-cysteinyldopa formation in gluten. Food Sci Technol Res, 2000, 6: 40-43[本文引用:1]
[36]Marsh D R, Galliard T. Measurement of polyphenol oxidase activity in wheat-milling fractions. J Cereal Sci, 1986, 4: 241-248[本文引用:1]
[37]葛秀秀, 何中虎, 杨金, 张歧军. 我国冬小麦品种多酚氧化酶活性的遗传变异及其与品质性状的相关分析. 作物学报, 2003, 29: 481-485
Ge X X, He Z H, Yang J, Zhang Q J. Polyphenol oxidase activities of Chinese winter wheat cultivars and correlations with quality characteristics. Acta Agron Sin, 2003, 29: 481-485 (in Chinese with English abstract)[本文引用:1]
[38]Zhao C H, Cui F, Wang X Q, Shan S C, Li X F, Bao Y G, Wang H G. Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crops Res, 2012, 127: 79-84[本文引用:1]
[39]Amiour N, Jahier J, Tanguy A M, Chiron H, Branlard G. Effect of 1R(1A), 1R(1B) and 1R(1D) substitution on technological value of bread wheat. J Cereal Sci, 2002, 35: 149-160[本文引用:1]
相关话题/河南 基因 环境 北京 作物