关键词:异源多倍体; 人工合成小麦; 未减数配子 Detection of the Molecular Marker and Chromosomal Segment linked to Unreduced Gamete Gene in Common Wheat KOU Chun-Lan, ZHAO Lai-Bin, LIU Meng, HAO Ming, NING Shun-Zong, YUAN Zhong-Wei, LIU Deng-Cai, ZHANG Lian-Quan* Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China Fund:This study was supported by the National Natural Science Foundation of China (31271723, 31201210), Sichuan Provincial Youth Fund (2011JQ0016), and the Scientific Research Foundation of the Education Department of Sichuan Province (14ZA0012) AbstractHexaploid common wheat ( Triticum aestivumL., AABBDD, 2 n = 42) arose from spontaneous chromosome doubling of the hybrid between T. turgidumand Aegilops tauschiiCosson. The process of chromosomes doubling is mainly determined by unreduced gametes (UG) genes in T. turgidum. The genetic effects on the UG production may vary among T. turgidum lines. In this study, a SSR marker close to the UG gene QTug.sau-3B( Xgpw1146) and high throughput DArTseq genotyping technique were used to screen the UG gene in common wheat lines transferred from T. turgidum via synthetic hexaploid wheat (SHW) as a bridge. Out of the analyzed 105 SHW-derived elite lines, 17 had the Xgpw1146 allele from T. turgidum, indicating that the UG gene was probably transferred into these wheat lines. According to the DArTseq genotyping data on 88 lines derived from the synthetic hexaploid wheat SHW-L1, all these lines with the T. turgidum Xgpw1146 allele contained a chromosomal segment of SHW-L1, probably covering the Xgpw1146 locus. This indicates that the adjacent region of the UG gene as a chromosomal segment was transferred into wheat lines. These SHW-derived lines have important application potential on wheat doubled haploid breeding.
图2 小麦基因QTug.sau-3B遗传连锁图(A)、DArTseq连锁标记wPt-7152的邻近区段 (B)及合成小麦改良品系中QTug.sau-3B邻近区段检测(C) A: QTug.sau-3B连锁图谱来自Hao等[20]; B: 可能含有与QTug.sau-3B相邻的2个染色体区段101.67-107.37 cM (红色矩形区域)和93.78-98.97 cM (绿色矩形区域)区段在DArTseq-3B图谱(由Diversity Arrays Technology Pty Ltd. 公司提供)上的位置。C: 2个染色体区段中任何一个和人工合成小麦亲本该区段相同标记数大于90%的株系, 其中, 蓝色横线表示检测含有SHW-L1的Xgpw1146等位位点的株系, 株系L13-81、L13-316、L13-326、L13-331、L13-341和L13-366中P1、P2、P3分别代表它们的小麦亲本川农16、Pm99915-1、04103; 株系L13-461、L13-466和L13-471中P1代表川农16, P2代表Pm99915-1, P3代表03-DH1959。Fig. 2 Linkage map of gene QTug.sau-3B (A), linked DArTseq marker wPt-7152 and its adjacent regions (B), and detection of adjacent regions harboring QTug.sau-3B in improved lines of synthetic hexaploid wheat A: Linkage map of QTug.sau-3Baccording to Hao et al.[20]; B: Location information of two chromosome segments nearby QTug.sau-3B on linking map of DArTseq-3B (provided by Diversity Arrays Technology Pty Ltd.), covering 101.67-107.37 cM (red rectangular region) and 93.78-98.97 cM (green rectangular region); C: The elite lines showed same markers more than 90%, compared to one of the two segments in synthetic hexaploid wheat. The blue lines represent the elite lines with the Xgpw1146allele from SHW-L1. P1, P2, and P3 represent Chuannong16, Pm99915-1, and 04103, respectively, which are their common wheat parents of lines L13-81, L13-316, L13-326, L13-331, L13-341, and L13-366. P1, P2, and P3 represent Chuannong16, Pm99915-1 and 03-DH1959, respectively, the parents of lines L13-461, L13-466, and L13-471.
3 讨论加倍单倍体在遗传和育种研究中有重要的应用价值。产生加倍单倍体包括两个关键步骤, 一是产生单倍体, 目前已经有产生小麦单倍体的比较成熟和可靠的方法, 如小麦-玉米杂交法; 二是对获得的单倍体进行染色体加倍, 目前常见的加倍方法是用秋水仙碱等药品, 处理, 但是该方法存在处理程序繁琐、工作量大、条件不易控制、成功率低、药品对植株有毒害作用、诱导遗传变异等缺点, 而且秋水仙碱等药品对人畜有毒, 容易造成环境污染。因此, 人工加倍方法不利于大规模的批量生产加倍单倍体, 从而限制了加倍单倍体在遗传育种中的实际应用效率。利用普通小麦单倍体自身具有的染色体自动加倍功能, 可以解决上述问题。本研究筛选出的可能具有未减数配子基因QTug.sau-3B、且综合农艺性状优良的新材料, 是单倍体育种潜在的育种亲本。下一个阶段的任务是将这些材料诱导成单倍体, 评价其实际加倍效果, 同时利用它们构建育种群体评估在加倍单倍体育种中的实际应用价值。 4 结论在人工合成小麦改良后代中筛选出17个具有未减数配子基因连锁标记的品系, 这些材料在小麦加倍单倍体育种中有非常重要的应用价值。 The authors have declared that no competing interests exist.
Harlan J R, deWet J M J, On Ö. Winge and a Prayer: the origins of polyploidy. , 1975, 41: 361-390[本文引用:1]
[2]
JenczewskiE, AlixK. From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. , 2004, 23: 21-45[本文引用:1]
[3]
Ramanna MS, JacobsenE. Relevance of sexual polyploidization for crop improvement: a review. , 2003, 133: 3-8[本文引用:2]
[4]
ZhangL, ZhangL, LuoJ, ChenW, HaoM, LiuB, YanZ, ZhangB, ZhangH, ZhengY, LiuD, YenY. Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. , 2011, 2: 89-94[本文引用:1]
[5]
Forster BP, Heberle-BorsE, Kasha KJ, TouraevA. The resurgence of haploids in higher plants. , 2007, 12: 368-375[本文引用:2]
[6]
Palmer CE, Keller WA. Challenges and limitations to the use of haploidy in crop improvement. In: Palmer C E, Keller W A, Kasha K J eds. Biotechnology in Agriculture and Forestry, Haploids in Crop Improvement II. 2005. pp 295-303[本文引用:2]
[7]
Jauhar PP, Xu SS, Baenziger PS. Haploidy in cultivated wheats: Induction and utility in basic and applied research. , 2009, 49: 737-755[本文引用:1]
[8]
Niemirowicz-SzczyttK. Excessive homozygosity in doubled haploids — advantages and disadvantages for plant breeding and fundamental research. , 1997, 19: 155-167[本文引用:1]
[9]
FeldmanM. , 2001. pp 1-56[本文引用:1]
[10]
Zhang LQ, YangY, Zheng YL, Liu DC. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. , 2007, 20: 159-166[本文引用:3]
[11]
Xu SJ, Joppa LR. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. , 1995, 38: 607-615[本文引用:2]
[12]
FukudaK, SakamotoS. Cytological studies on unreduced male gamete formation in hybrids between tetraploid emmer wheats and Aegilops squarrosa L. , 1992, 42: 255-266[本文引用:2]
[13]
Xu SJ, Joppa LR. First-division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. , 2000, 119: 233-241[本文引用:2]
[14]
ZhangL, ChenQ, YuanZ, XiangZ, ZhengY, LiuD. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. , 2008, 35: 617-623[本文引用:2]
[15]
MatsuokaY, NasudaS. Durum wheat as a cand idate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. , 2004, 109: 1710-1717[本文引用:1]
[16]
XuS, DongY. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. , 2011, 35: 379-384[本文引用:1]
[17]
Zhang LQ, Liu DC, Zheng YL, Yan ZH, Dai SF, Li YF, JiangQ, Ye YQ, YenY. Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. , 2010, 172: 285-294[本文引用:4]
[18]
Wang CJ, Zhang LQ, Dai SF, Zheng YL, Zhang HG, Liu DC. Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidum × Aegilops tauschii hybrids. , 2010, 175: 323-329[本文引用:1]
[19]
De StormeN, GeelenD. Sexual polyploidization in plants: cytological mechanisms and molecular regulation. , 2013, 198: 670-684[本文引用:1]
[20]
HaoM, LuoJ, ZengD, ZhangL, NingS, YuanZ, YanZ, ZhangH, ZhengY, FeuilletC, ChouletF, YenY, ZhangL, LiuD. QTug. sau-3B is a major quantitative trait locus for wheat hexaploidization. , 2014, 4: 1943-1953[本文引用:5]
[21]
LiuD, ZhangH, ZhangL, YuanZ, HaoM, ZhengY. . Alien Gene Transfer in Crop Plants. Springer & New York, 2014. pp 25-42[本文引用:1]
[22]
Zeng DY, HaoM, Luo JT, Zhang LQ, Yuan ZW, Ning SZ, Zheng YL, Liu DC. Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. , 2014, 93: 531-534[本文引用:1]
[23]
Yang YW, Zhang LQ, YenY, Liu DC. Cytological evidence on meiotic restitution in pentaploid F1 hybrids between synthetic hexaploid wheat and Aegilops variabilis. , 2010, 63: 354-358[本文引用:1]
[24]
YanZ, WanY, LiuK. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. , 2002, 47: 220-225[本文引用:1]
[25]
ZhangL, Luo JT, HaoM, Zhang LQ, Yuan ZW, Yan ZH, Liu YX, ZhangB, Liu BL, Liu CJ, Zhang HG, Zheng YL, Liu DC. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. , 2012, 13: 69[本文引用:1]
[26]
刘登才, 张连全, 郝明, 罗江陶, 郑有良, 袁中伟, 颜泽洪, 代寿芬. 小麦未减数配子基因的分子标记及其应用. 2014. , ZL201210293612. 5. Liu DC, Zhang LQ, HaoM, Luo JT, Zheng YL, Yuan ZW, Yan ZH, Dai S F. Molecular Markers of Wheat Unreduced Gametes and Its Application. 2014. 0293612. 5 (in Chinese). [本文引用:1]