关键词:水稻; 稗草; 干湿交替灌溉; 产量; 光合特性 Effects of Different Species in Echinochloa on Photosynthetic Characteristics and Grain Yield in Rice under Alternate Wetting and Moderate Drying Condition ZHANG Zi-Chang1, LI Yong-Feng1,*, YANG Xia1, LU Fan2, QIU Guang2, LI Jian-Wei2 1 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
2 Suke Agro-chemical of Jiangsu Province Co. Ltd., Nanjing 210014, China
AbstractIn order to investigate the effects of different barnyardgrass species on photosynthetic characteristic and grain yield of rice, two rice cultivars, Liangyoupeijiu (an indicahybrid cultivar) and Nanjing 9108 (a japonica cultivar), were co-cultured with four barnyardgrass species from transplanting to maturity under alternate wetting and moderate drying condition. The treatments were designed as follow: weed free (control), rice with Echinochloa crusgalli var. mitis (T1), rice with Echinochloa crusgalli (T2), rice with Echinochloa crusgalivar. zelayensis (T3), and rice with Echinochloa colonum(T4). The results showed that the degree of interference of barnyardgrass on rice yield depended on different barnyardgrass species and rice cultivars. The interference intensity of barnyardgrass was in the order of T3>T1>T2>T4, and grain yield loss rate in Liangyoupeijiu was less than that in Nanjing 9108. T1, T2, T3, and T4 treatments respectively reduced 11.16%-13.78%, 10.19%-10.60%, 19.00%-23.79%, and 0.50%-1.57%, for Liangyoupeijiu of the grain yield and 38.44%-45.51%, 31.29%-36.86%, 54.88%-60.65%, and 8.28%-15.14% for Nanjing 9108, T1, T2, and T3 significantly reduced rice grain yield, while the effect of T4 was significant for Nanijng 9108 but not for Liangyoupeijiu when compared with CK. Moreover T1, T2, and T3 had no effects on leaf area index and contents of photosynthetic pigments for Liangyoupeijiu, but Nanjing 9108 significantly reduced leaf area index and increased contents of photosynthetic pigments under the same treatment condition. Furthermore, four treatments significantly reduced rice canopy light transmission, leaf photosynthetic rate, stomata conductance, transpiration rate and dry matter accumulation during grain filling stage. The results indicated that the decrease in canopy light transmission, photosynthetic rate, transpiration rate, stomata conductance and the increase in some degree in contents of photosynthetic pigments during grain filling stage may contribute to grain yield reduction of rice.
Keyword:Rice; Barnyardgrass; Alternate wetting and moderate drying; Grain yield; Photosynthetic characteristics Show Figures Show Figures
表1 干湿交替灌溉条件下不同种稗草对水稻产量及产量构成因素的影响 Table 1 Effects of different of barnyardgrasss on grain yield and its components of rice under alternate wetting and drying
试验地点 Experiment site
水稻品种 Rice cultivar
处理 Treatment
穗数 No. of panicles (× 104 hm-2)
每穗粒数 Spikelets per panicle
结实率 Seed-setting rate (%)
千粒重 1000-grain weight (g)
产量 Grain yield (t hm-2)
南京 Nanjing
两优培九 Liangyoupeijiu
无稗CK
230 a
215 a
77.9 a
26.2 a
10.09 a
无芒稗T1
232 a
210 a
70.1 c
25.5 bc
8.70 b
稗T2
235 a
212 a
70.6 c
25.6 b
9.02 b
西来稗T3
231 a
199 a
66.5 d
25.2 c
7.69 c
光头稗T4
236 a
218 a
74.6 b
26.1 a
10.04 a
南粳9108 Nanjing 9108
无稗CK
257 a
148 a
95.2 a
25.6 a
9.25 a
无芒稗T1
245 a
102 b
84.6 cd
23.9 d
5.04 d
稗T2
247 a
114 b
86.1 c
24.1 c
5.84 c
西来稗T3
240 a
81 c
83.7 d
22.4 e
3.64 e
光头稗T4
248 a
138 a
90.9 b
25.3 b
7.85 b
溧水 Lishui
两优培九 Liangyoupeijiu
无稗CK
230 a
217 a
78.4 a
26.1 a
10.21 a
无芒稗T1
230 a
218 a
71.1 c
25.3 b
9.04 b
稗T2
238 a
215 a
71.2 c
25.1 bc
9.17 b
西来稗T3
235 a
212 a
66.2 d
25.0 c
8.27 c
光头稗T4
231 a
221 a
75.8 b
25.9 a
10.05 a
南粳9108 Nanjing 9108
无稗CK
245 a
146 a
96.7 a
25.5 a
8.82 a
无芒稗T1
243 a
106 b
87.6 c
24.0 b
5.43 c
稗T2
251 a
115 b
88.2 c
23.8 b
6.06 c
西来稗T3
243 a
84 c
86.0 d
22.7 c
3.98 d
光头稗T4
248 a
136 a
94.5 b
25.4 a
8.09 b
CK: barnyardgrass free; T1:Echinochloa crusgallivar. mitis; T2: Echinochloa crusgalli crusgalli; T3: Echinochloa crusgalli crusgalivar. zelayensis; T4:Echinochloa crusgalli colonum. Value followed by different letters within the same column for the same cultivar are significantly different at P< 0.05. CK: 无稗; T1: 无芒稗; T2: 稗; T3: 西来稗; T4: 光头稗; 同一栏同一品种内不同字母表示在0.05水平上差异显著。
表1 干湿交替灌溉条件下不同种稗草对水稻产量及产量构成因素的影响 Table 1 Effects of different of barnyardgrasss on grain yield and its components of rice under alternate wetting and drying
图2 干湿交替灌溉条件下不同种稗草对透光率的影响T1: 无芒稗; T2: 稗; T3: 西来稗; T4: 光头稗。Fig. 2 Effects of different of barnyardgrass on light transmission rate of rice under alternate wetting and dryingT1: Echinochloa crusgalli var. mitis; T2:Echinochloa crusgalli crusgalli; T3: Echinochloa crusgalli crusgali var. zelayensis; T4: Echinochloa crusgalli colonum.
表2 干湿交替灌溉条件下不同处理种对水稻干物质积累量 Table 2 Dry matter accumulation of rice in different treatments under alternate wetting and drying (t hm-2)
水稻品种 Rice cultivar
处理 Treatment
分蘖中期 Mid-tillering
穗分化始期 Panicle initiation
抽穗期 Heading
成熟期 Maturity
两优培九 Liangyoupeijiu
CK
2.45 a
6.28 a
12.62 a
20.63 a
T1
2.48 a
6.08 a
11.54 b
17.61 b
T2
2.56 a
6.24 a
11.24 b
18.24 b
T3
2.67 a
6.01 a
10.98 b
16.56 c
T4
2.53 a
6.39 a
12.45 a
20.42 a
南粳9108 Nanjing 9108
CK
1.63 a
5.62 a
10.87 a
18.45 a
T1
1.48 a
5.16 a
8.04 c
12.43 c
T2
1.62 a
5.34 a
9.21 b
12.85 c
T3
1.68 a
4.71 b
7.21 c
10.36 d
T4
1.54 a
5.24 a
9.75 b
15.81 b
CK: barnyardgrass free; T1:Echinochloa crusgallivar. mitis; T2: Echinochloa crusgalli crusgalli; T3: Echinochloa crusgalli crusgalivar. zelayensis; T4:Echinochloa crusgalli colonum; Different letters within the same column and same cultivar mean significant difference at the 0.05 level. CK: 无稗; T1: 无芒稗; T2: 稗; T3: 西来稗; T4: 光头稗; 同一栏同一品种内不同字母表示在0.05水平上差异显著。
表2 干湿交替灌溉条件下不同处理种对水稻干物质积累量 Table 2 Dry matter accumulation of rice in different treatments under alternate wetting and drying (t hm-2)
表3 干湿交替灌溉条件下不同处理水稻的叶面积指数 Table 3 LAI of rice in different trentments under alternate wetting and drying
水稻品种 Rice cultivar
处理 Treatment
分蘖中期 Mid-tillering
穗分化始期 Panicle initiation
抽穗期 Heading
两优培九 Liangyoupeijiu
CK
2.87 a
5.14 a
7.11 a
T1
2.91 a
5.08 a
7.04 a
T2
2.84 a
5.10 a
7.07 a
T3
2.99 a
5.08 a
7.01 a
T4
3.01 a
5.10 a
7.07 a
南粳9108 Nanjing 9108
CK
2.74 a
4.78 a
6.76 a
T1
2.65 a
4.68 a
6.11 bc
T2
2.68 a
4.72 a
6.18 b
T3
2.59 a
4.45 a
5.84 c
T4
2.57 a
4.65 a
6.60 a
CK: barnyardgrass free; T1:Echinochloa crusgallivar. mitis; T2: Echinochloa crusgalli crusgalli; T3: Echinochloa crusgalli crusgalivar. zelayensis; T4:Echinochloa crusgalli colonum; Different letters within the same column and same cultivar mean significant difference at the 0.05 level. CK: 无稗; T1: 无芒稗; T2: 稗; T3: 西来稗; T4: 光头稗; 同一栏同一品种内不同字母表示在0.05水平上差异显著。
表3 干湿交替灌溉条件下不同处理水稻的叶面积指数 Table 3 LAI of rice in different trentments under alternate wetting and drying
Li LJ, Chen TT, Wang ZQ, ZhangH, Yang JC, Zhang JH. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res, 2013, 154: 226-235[本文引用:1]
[2]
Liu XJ, Wang JC, Lu SH, Zhang FS, Zeng XZ, Ai YW, PengS, ChristieP. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Res, 2003, 83: 297-311[本文引用:1]
[3]
RamasamyS, BergeH F M T, PurushothamanS. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res, 1997, 51: 65-82[本文引用:1]
[4]
Bouman B AM, PengS, Castaňeda AR, Visperas RM. Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manage, 2005, 74: 87-105[本文引用:1]
[5]
Ockerby SE, FukaS. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res, 2001, 69: 215-226[本文引用:1]
[6]
Toung TP, BoumanB A M, MortimerM. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci, 2005, 8: 231-241[本文引用:1]
[7]
Yang CM, Yang LZ, Yang YX, Zhu OY. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manage, 2004, 70: 67-81[本文引用:1]
[8]
Bouman B AM, Fen LG, Tuong TP, LuG, WangH, FengY. Exploring options to grow rice under water-short conditions in northern China using a modelling approach: II. Quantifying yield, water balance components, and water productivity. Agric Water Manage, 2007, 88: 23-33[本文引用:1]
[9]
方长旬, 许铁城, 黄力坤, 王清水, 何海斌, 林文雄. 水稻品种“Lemont”响应低氮培养及共培稗草的上调表达基因分析. 中国生态农业学报, 2012, 20: 1185-1190Fang CX, Xu TC, Huang LK, Wang QS, He HB, Lin WX. Analysis of up-regulating of “lemont” rice accdssion in response to low nitrogen supply and accompanying barngardgrass. Chin J Eco-Agric, 2012, 20: 1185-1190 (in Chinese with English abstract)[本文引用:1]
[10]
徐正浩, 谢国雄, 周宇杰, 高屾. 三种栽植方式下不同株型和化感特性水稻对无芒稗的干扰控制作用. 作物学报, 2013, 39: 537-548Xu ZH, Xie GX, Zhou YJ, GaoS. Interference of rice with different morphological types and allelopathy on barnyardgrass under three planting patterns. Acta Agron Sin, 2013, 39: 537-548 (in Chinese with English abstract)[本文引用:2]
[11]
Chauhan SB, Johnson DE. Relative importance of shoot and root competition in dry-seeded rice growing with junglerice (Echinochloa colona) and ludwigia (Ludwigia hyssopifolia). Weed Sci, 2010, 58: 295-299[本文引用:2]
[12]
张自常, 李永丰, 张彬, 杨霞. 稗属杂草对水稻生长发育和产量的影响. , 2014, 25: 3177-3184Zhang ZC, Li YF, ZhangB, YangX. Influence of weeds in Echinochloa on growth and yield of rice. , 2014, 25: 3177-3184 (in Chinese with English abstract)[本文引用:1]
[13]
李少昆, 赵明, 许启风, 王树安, 王玉萍, 王美云, 王崇桃, 曹连莆. 我国常用玉米自交系光合特性的研究. 中国农业科学, 1999, 32(2): 53-59Li SK, ZhaoM, Xu QF, Wang SA, Wang YP, Wang MY, Wang CT, Cao LP. A study on photosynthetic rates of inbred lines extensively used in China. Sci Agric Sin, 1999, 32(2): 53-59 (in Chinese with English abstract)[本文引用:1]
[14]
程建平, 曹凑贵, 蔡明历, 汪金平, 原保忠, 王建漳, 郑传举. 不同灌溉方式对水稻生物学特性与水分利用效率的影响. 应用生态学报, 2006, 17: 1859-1865Cheng JP, Cao CG, Cai ML, Wang JP, Yuan BZ, Wang JZ, Zheng CJ. Effects of different irrigation modes on biological characteristics and water use efficiency of paddy rice. Chin J Appl Ecol, 2006, 17: 1859-1865 (in Chinese with English abstract)[本文引用:1]
[15]
邵玺文, 刘红丹, 杜震宇, 杨晶, 孟繁霞, 马景勇. 不同时期水分处理对水稻生长及产量的影响. 水土保持学报, 2007, 21: 193-196Shao XW, Liu HD, Du ZY, YangJ, Meng FX, Ma JY. Effects of water disposal on growth and yield of rice. J Soil Water Conserv, 2007, 21: 193-196 (in Chinese with English abstract)[本文引用:1]
[16]
ZhangH, Zhang SF, Yang JC, Zhang JH, Wang ZQ. Alternate wetting and moderate soil drying during grain filling improves both quality and quantity of rice yield. Agron J, 2008, 100: 726-733[本文引用:2]
[17]
Zhen GJ, Ren GJ, Lu XM, Jiang XL. Effects of water stress on rice grain yield and quality after heading stage. , 2003, 17: 239-243 (in Chinese with English abstract)[本文引用:1]
Dong NM, Brand t KK, SørensenJ, Hung NN, Hach CV, Tan PS, DalsgaardT. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol Biochem, 2012, 47: 166-174[本文引用:1]
[20]
Xue YG, DuanH, Liu LJ, Wang ZQ, Yang JC, Zhang JH. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013, 53: 271-284[本文引用:1]
[21]
方荣杰. 非充分灌溉条件下稻田生态环境影响. 节水灌溉, 2001, (5): 35-37Fang RJ. The effect of deficit irrigation conditions on ecological environment of paddy field. Watet Saving Irrig, 2001, (5): 35-37 (in Chinese)[本文引用:1]
[22]
朱文达. 稗对水稻生长和产量性状的影响及其经济阈值. 植物保护学报, 2005, 32: 81-86Zhu WD. Influence of barnyardgrass, Echinochloa crusgalli, on the growth and yield of paddy rice and its economic threshold. Acta Phytophy Sin, 2005, 32: 81-86 (in Chinese with English abstract)[本文引用:1]
[23]
Boccaland ro HE, Rugnone ML, Moreno JE, Ploschuk EL, SernaL, Yanovsky MJ, Casal JJ. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol, 2009, 150: 1083-1092[本文引用:1]
[24]
AfifiM, SwantonC. Maize seed and stem roots differ in response to neighboring weeds. Weed Res, 2011, 51: 442-450[本文引用:1]
[25]
李伟, 曹坤芳. 干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响. 西北植物学报, 2006, 26: 266-275LiW, Cao KF. Effects of drought stress on photosynthetic characteristics and chlorophyll fluorescence parameters in seedings of Terminthia paniculata grown under different light level. Acta Bot Boreali-Occident Sin, 2006, 26: 266-275 (in Chinese with English abstract)[本文引用:1]
[26]
崔海岩, 勒立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39: 478-485Cui HY, Jin LB, LiB, ZhaoB, Dong ST, LiuP, Zhang JW. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013, 39: 478-485 (in Chinese with English abstract)[本文引用:1]