关键词:水稻; 黄绿叶突变体; 遗传分析; 精细定位 Genetic Analysis and Fine Mapping of Yellow-Green Leaf Mutant ygl209 in Rice LI Guang-Xian1, YAO Fang-Yin2, HOU Heng-Jun3, SUN Zhao-Wen1, JIANG Ming-Song1, ZHU Wen-Yin1, ZHOU Xue-Biao1,* 1 Shandong Rice Research Institute, Jinan 250100, China
2 High-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
3 Agricultural Bureau of Rencheng Distinct, Jining 272000, China
AbstractEtiolation mutants of rice play an important role in studies on the photosynthesis, chloroplast development, and chlorophyll metabolism in higher plants. A japonica rice mutant ygl209 with yellow-green leaf was identified from the BC4F3 progeny of the cross between the transgenic variety of Zhongguo 91 and Zhendao 88 with the latter as the recurrent parent. Compared with the wild-type parent Zhendao 88, the contents of chlorophyll a, chlorophyll b and carotenoid decreased dramatically in the mutant ygl209at the seedling, tillering and heading stages, respectively. In particular, chlorophyll b decreased most significantly. However, there was no significant change in other agronomic traits, such as heading stage, plant height, number of effective panicles per plant, number of grains in main stem panicle, seed setting rate and 1000-grain weight. Genetic analysis showed that the yellow-green leaf trait of the ygl209 mutant was controlled by one pair of recessive nuclear genes. With F2 and F3segregation populations derived from the cross between ygl209 and Zhendao 88, the YGL209 gene was mapped to the centromere region of chromosome 1, with a physical distance of 571.6 kb. We further analyzed the putative candidate genes in the target region through sequencing. A single base substitution (G1390C) was detected in the coding region of the LOC_Os01g31110 gene, which resulted in a missense mutation (A348G) in its encoded protein. Bioinformatic analysis predicted that the LOC_Os01g31110gene is related to the chloroplast development in rice. Therefore, LOC_Os01g31110 is likely to be the candidate gene of YGL209.
Keyword:Rice ( Oryza sativa L.); Yellow-green leaf mutant; Genetic analysis; Fine mapping Show Figures Show Figures
图1 野生型亲本与突变体ygl209在苗期(A)、分蘖期(B)和抽穗期(C)的植株形态图片左侧均为野生型亲本(深绿色), 右侧为突变体ygl209 (黄绿色)。Fig. 1 Plant phenotype of the wild type parents and the mutant ygl209 at seedling (A), tillering (B), and heading (C) stagesThe wild type parents (dark green leaf) and the mutant ygl209 (yellow green leaf) were on the left and right of the photos, respectively.
表1 Table 1 表1(Table 1)
表1 突变体ygl209与其野生型亲本镇稻88的性状比较 Table 1 Comparison of traits between the mutant ygl209 and its wild type parent Zhendao 88
性状 Trait
ygl209
镇稻88 Zhendao 88 (CK)
比对照增减 Compared to CK (%)
抽穗期 Heading stage (d)
151± 3.5
150± 1.9
-0.7 (ns)
株高 Plant height (cm)
97± 3.5
96± 1.8
-1.0 (ns)
每株有效穗数 No. of effective panicles per plant
13± 2.7
14± 3.6
7.1 (ns)
主茎穗总粒数 No. of grains in main stem panicle
141± 6.8
136± 5.2
-3.7 (ns)
结实率 Seed-setting rate (%)
89± 3.4
91± 2.1
2.2 (ns)
千粒重 1000-grain weight (g)
26.7± 0.2
27.0± 0.1
1.1 (ns)
ns: not significant at P< 0.05. ns表示在P< 0.05水平差异不显著。
表1 突变体ygl209与其野生型亲本镇稻88的性状比较 Table 1 Comparison of traits between the mutant ygl209 and its wild type parent Zhendao 88
表2 Table 2 表2(Table 2)
表2 突变体与野生型植株中光合色素含量 Table 2 Photosynthetic pigment contents in plants between mutant and wild type plant
生育期 Growth stage
材料 Material
叶绿素 Chl (mg g-1)
叶绿素a Chl a (mg g-1)
叶绿素b Chl b(mg g-1)
叶绿素a/b Chl a/b
β -胡萝卜素 β -Car (mg g-1 )
苗期 Seedling stage
ygl209
2.19± 0.03
1.58± 0.00
0.61± 0.01
2.61± 0.02
0.55± 0.01
镇稻88 Zhendao 88 (CK)
3.12± 0.01
1.81± 0.01
1.31± 0.02
1.37± 0.03
0.65± 0.00
比CK增减 Compared to CK
-29.81%* *
-12.71%* *
-53.44%* *
90.51%* *
-15.38%* *
分蘖期 Tillering stage
ygl209
2.45± 0.01
1.78± 0.01
0.67± 0.04
2.66± 0.01
0.46± 0.01
镇稻88 Zhendao 88 (CK)
3.59± 0.00
2.18± 0.03
1.41± 0.03
1.54± 0.01
0.76± 0.03
比CK增减 Compared to CK
-31.75%* *
-18.35%* *
-52.48%* *
72.73%* *
-39.47%* *
抽穗期 Heading stage
ygl209
2.36± 0.01
1.64± 0.03
0.72± 0.00
2.28± 0.01
0.51± 0.01
镇稻88 Zhendao 88 (CK)
3.94± 0.01
2.19± 0.00
1.75± 0.01
1.25± 0.02
0.81± 0.01
比CK增减 Compared to CK
-40.10%* *
-25.11%* *
-58.86%* *
82.40%* *
-37.04%* *
* * Significant at P< 0.01. * * 表示在P< 0.01水平差异显著。
表2 突变体与野生型植株中光合色素含量 Table 2 Photosynthetic pigment contents in plants between mutant and wild type plant
表3 Table 3 表3(Table 3)
表3 突变体ygl209与正常绿色品种杂交F2的叶色分离 Table 3 Segregation of leaf color in F2population of the crosses between ygl209and normal rice
群体 Combination
总株数 Total number of plants
绿叶株数 No. of green plants
黄绿叶株数 No. of yellow green plants
χ 2 (3:1)
ygl209/ Zhendao 88
801
609
192
0.453
ygl209/ 9311
433
321
112
0.173
表3 突变体ygl209与正常绿色品种杂交F2的叶色分离 Table 3 Segregation of leaf color in F2population of the crosses between ygl209and normal rice
图2cry1Ab基因的PCR扩增M为1 kb DNA ladder marker; 1~10为杂交组合ygl209/镇稻88和ygl209/9311的F2群体中黄绿叶突变单株, 其中1~3及6~8来源于ygl209/镇稻88群体, 4、5、9和10来源于ygl209/9311群体; P1~P3分别为ygl209、镇稻88和9311。Fig. 2 PCR amplification of cry1AbM: 1 kb DNA ladder marker; 1-10: the mutant individuals in F2 segregation populations, among them, 1-3 and 6-8 were derived from cross combination ygl209/Zhendao88 and others (4, 5, 9, and 10) were derived from cross combination ygl209/9311; P1-P3: ygl209, Zhendao 88, and 9311, respectively.
图3 黄绿叶突变体ygl209基因的分子定位及候选基因预测A: ygl209基因初定位; B: ygl209基因精细定位; C: 预测的候选基因; SSR标记的物理位置来源于Gramene网站(http://www.gramene.org/)检索到的数据(2014年10月)。Fig. 3 Molecular mapping and candidate genes prediction of mutant ygl209A: preliminary mapping of ygl209; B: fine mapping of ygl209; C: candidate genes prediction; the physical positions of the markers were derived from Gramene (http://www.gramene.org/) on October, 2014.
表4 Table 4 表4(Table 4)
表4 定位区间内的编码基因及其推测功能 Table 4 Annotated genes and their putative functions in the target interval
基因名称 Gene name
推测功能 Putative function
LOC_Os01g29820.1
Expressed protein
LOC_Os01g29830.1
Expressed protein
LOC_Os01g29850.1
Expressed protein
LOC_Os01g29840.1
No apical meristem protein, putative, expressed
LOC_Os01g29860.1
Expressed protein
LOC_Os01g29890.1
Expressed protein
LOC_Os01g29870.1
Multidrug resistance protein 9, putative, expressed
图4LOC_Os01g31110的序列及其编码产物差异A: LOC_Os01g31110 编码区的DNA序列差异; B: LOC_Os01g31110编码的氨基酸序列差异。Fig. 4 Sequences and the encoded amino acid difference of LOC_Os01g31110A, B: the variations of LOC_Os01g31110 in the code region and amino acid sequences, respectively.
邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 25(5): 9-14Deng XJ, Zhang HQ, WangY, Shu ZF, Wang GH, Wang GL. Research advances on rice leaf-color mutant genes. Hybrid Rice, 2012, 25(5): 9-14 (in Chinese with English abstract)[本文引用:2]
[2]
朱丽, 刘文真, 吴超, 栾维江, 傅亚萍, 胡国成, 斯华敏, 孙宗修. 水稻着丝粒附近一个淡绿叶突变相关基因的定位分析. 中国水稻科学, 2007, 21: 228-234ZhuL, Liu WZ, WuC, Luan WJ, Fu YP, Hu GC, Si HM, Sun ZX. Identification and fine mapping of a gene related to pale green leaf near centromere region in rice (Oryza sativa L. ). Chin J Rice Sci, 2007, 21: 228-234 (in Chinese with English abstract)[本文引用:1]
[3]
李秀兰, 孙小秋, 王平荣, 周慧, 邓晓建. 一个新的水稻黄绿叶突变体的遗传分析与基因定位. 作物学报, 2010, 36: 1050-1054Li XL, Sun XQ, Wang PR, ZhouH, Deng XJ. Genetic analysis and gene mapping of a novel yellow-green leaf mutant in rice. Acta Agron Sin, 2010, 36: 1050-1054 (in Chinese with English abstract)[本文引用:3]
[4]
许凤华, 程治军, 王久林, 吴自明, 孙伟, 张欣, 雷财林, 王洁, 吴赴清, 郭秀平, 刘玲珑, 万建民. 水稻白条纹叶Gws基因的精细定位与遗传分析. 作物学报, 2010, 36: 713-720Xu FH, Cheng ZJ, Wang JL, Wu ZM, SunW, ZhangX, Lei CL, WangJ, Wu FQ, Guo XP, Liu LL, Wan JM. Genetic analysis and fine-mapping of Gws gene using green-white-stripe rice mutant. Acta Agron Sin, 2010, 36: 713-720 (in Chinese with English abstract)[本文引用:1]
[5]
张力科, 李志彬, 刘海燕, 李如海, 陈满元, 陈爱国, 钱益亮, 华泽田, 高用明, 朱苓华, 黎志康. 两个新的水稻叶色突变体形态结构与遗传定位研究. 中国农业科学, 2010, 43: 223-229Zhang LK, Li ZB, Liu HY, Li RH, Chen MY, Chen AG, Qian YL, Hua ZT, Gao YM, Zhu LH, Li ZK. Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin, 2010, 43: 223-229 (in Chinese with English abstract)[本文引用:1]
[6]
李育红, 王宝和, 戴正元, 李爱宏, 赵步洪, 左示敏, 陈忠祥, 张洪熙, 潘学彪. 水稻叶色突变体及其基因定位、克隆的研究进展. 江苏农业科学, 2011, 39(2): 34-39Li YH, Wang BH, Dai ZY, Li AH, Zhao BH, Zuo SM, Chen ZX, Zhang HX, Pan XB. Advance in gene mapping and cloning of leaf color mutants in rice. Jiangsu Agric Sci, 2011, 39(2): 34-39 (in Chinese)[本文引用:1]
[7]
Liu WZ, Fu YP, Hu GC, Si HM, ZhuL, WuC, Sun ZX. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L. ). Planta, 2007, 226: 785-795[本文引用:2]
[8]
Jung KH, HurJ, Ryu CH, ChoiY, Chung YY, MiyaoA, HirochikaH, AnG. Characterization of a rice chlorophyll- deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472[本文引用:2]
[9]
Zhang HT, Li JJ, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325-337[本文引用:2]
[10]
Wang PR, Gao JX, Wan CM, Zhang FT, Xu ZJ, Huang XQ, Sun XQ, Deng XJ. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994-1003[本文引用:2]
[11]
SakurabaY, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Peak NC. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122-133[本文引用:1]
[12]
Wu ZM, ZhangX, HeB, Diao LP, Sheng SL, Wang JL, Guo XP, SuN, Wang LF, JiangL, Wang CM, Zhai HQ, Wan JM. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40[本文引用:3]
[13]
LeeS, Kim JH, Yoo ES, Lee CH, HirochikaH, AnG. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805-818[本文引用:2]
[14]
Jiang HW, Li MR, Liang NT, Yan HB, Wei YB, Xu XL, LiuJ, Xu ZF, ChenF, Wu GJ. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197-209[本文引用:1]
[15]
SatoY, MoritaR, KatsumaS, NishimuraM, TanakaA, KusabaM. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120-131[本文引用:1]
[16]
MoritaR, SatoY, MasudaY, NishimuraM, KusabaM. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-952[本文引用:1]
[17]
Zhao CF, Xu JM, ChenY, Mao CZ, Zhang SL, Bai YH, JiangD, WuP. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. , 2012, 36: 1165-1176[本文引用:2]
[18]
KusumiK, SakataC, NakamuraT, KawasakiS, YoshimuraA, IbaK. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68: 1039-1050[本文引用:2]
[19]
SugimotoH, KusumiK, TozawaY, YazakiJ, KishimotoN, KikuchiS, IbaK. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985-996[本文引用:2]
[20]
TsuganeK, MaekawaM, TakagiK, TakaharaH, QianQ, Eun CH, IidaS. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J, 2006, 45: 46-57[本文引用:2]
[21]
Gothand am KM, Kim ES, ChoH, Chung YY. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421-433[本文引用:1]
[22]
SuN, Hu ML, Wu DX, Wu FQ, Fei GL, LanY, Chen XL, Shu XL, ZhangX, Guo XP, Cheng ZJ, Lei CL, Qi CK, JiangL, Wang HY, Wan JM. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159: 227-238[本文引用:2]
[23]
MiyoshiK, ItoY, SerizawaA, Kurata N. sHAP3 genes regulate chloroplast biogenesis in rice. Plant J, 2003, 36: 532-540[本文引用:2]
[24]
孙小秋, 王兵, 肖云华, 万春美, 邓晓建, 王平荣. 水稻ygl98黄绿叶突变基因的精细定位与遗传分析. 作物学报, 2011, 37: 991-997Sun XQ, WangB, Xiao YH, Wan CM, Deng XJ, Wang PR. Genetic analysis and fine-mapping of ygl98 yellow-green leaf gene in rice. Acta Agron Sin, 2011, 37: 991-997[本文引用:2]
[25]
Deng XJ, Zhang HQ, WangY, HeF, Liu JL, XiaoX, Shu ZF, LiW, Wang GH, Wang GL. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One, 2014, 9: e99564[本文引用:2]
[26]
黄晓群, 王平荣, 赵海新, 邓晓建. 一个新的水稻叶绿素缺失突变基因的遗传分析和分子标记定位. 中国水稻科学, 2007, 21: 355-359Huang XQ, Wang PR, Zhao HX, Deng XJ. Genetic analysis and molecular mapping of a novel chlorophyll deficit mutant gene in rice. Chin J Rice Sci, 2007, 21: 355-359[本文引用:2]
[27]
李燕群, 高家旭, 肖云华, 李秀兰, 蒲翔, 孙昌辉, 王平荣, 邓晓建. 水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位. 作物学报, 2014, 40: 644-649Li YQ, Gao JX, Xiao YH, Li XL, PuX, Sun CH, Wang PR, Deng XJ. Genetic analysis and gene fine mapping of yellow-green leaf mutant ygl80 in rice. Acta Agron Sin, 2014, 40: 644-649[本文引用:2]
[28]
王军, 王宝和, 周丽慧, 徐洁芬, 顾铭洪, 梁国华. 一个水稻新黄绿叶突变体基因的分子定位. 中国水稻科学, 2006, 20: 455-459WangJ, Wang BH, Zhou LH, Xu JF, Gu MH, Liang GH. Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin J Rice Sci, 2006, 20: 455-459[本文引用:2]
[29]
李燕群, 蒲翔, 李春梅, 钟萍, 孙昌辉, 李秀兰, 邓晓建, 王平荣. 水稻507ys黄绿叶突变体的遗传鉴定与候选基因分析. 中国农业科学, 2014, 47: 221-229Li YQ, PuX, Li CM, ZhongP, Sun CH, Li XL, Deng XJ, Wang PR. Genetic identification and cand idate gene analysis of yellow-green leaf mutant 507ys in rice. Sci Agric Sin, 2014, 47: 221-229[本文引用:2]
[30]
杨海莲, 刘敏, 郭旻, 李荣德, 张宏根, 严长杰. 一个水稻黄绿叶突变体ygl10的遗传分析和基因定位. 中国水稻科学, 2014, 28: 41-48Yang HL, LiuM, GuoM, Li RD, Zhang HG, Yan CJ. Genetic analysis and position cloning of a yellow-green leaf ygl10 gene, responsible for leaf colour in rice. Chin J Rice Sci, 2014, 28: 41-48[本文引用:3]
[31]
邓晓梅, 叶胜海, 修芬连, 周涯, 尚海漩, 纪现军, 刘继云, 陈萍萍, 金庆生, 张小明. 一个水稻黄绿叶突变性状的遗传分析及基因定位. 核农学报, 2012, 26: 203-209Deng XM, Ye SH, Xiu FL, ZhouY, Shang HX, Ji XJ, Liu JY, Chen PP, Jin QS, Zhang XM. Genetic analysis and gene fine mapping for mutation of yellow-green leaf in rice. Acta Agric Nucl Sin, 2012, 26: 203-209[本文引用:2]
[32]
王爱菊, 姚方印, 温孚江, 朱常香, 李广贤, 杨磊, 朱其松, 张洪瑞. 利用Bt基因和Xa21基因转化获得抗螟虫、白叶枯病的转基因水稻. 作物学报, 2002, 28: 857-860Wang AJ, Yao FY, Wen FJ, Zhu CX, Li GX, YangL, Zhu QS, Zhang HR. Obtaining of transgenic rice plants resistant to both stem borer and bacterial blight disease from Bt and Xa21 genes transforming. Acta Agron Sin, 2002, 28: 857-860 (in Chinese with English abstract)[本文引用:1]
[33]
Arnon DI. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-15[本文引用:1]
[34]
ZhangQ, Shen BZ, Dai XK, Mei MH, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994, 91: 8675-8679[本文引用:1]
[35]
McCouch SR, TeytelmanL, Xu YB, Lobos BK, ClareK, WaltonM, FuB, MaghirangR, LiZ, XingY, ZhangQ, KonoI, YanoM, FjellstromR, DeClerckG, SchneiderD, CartinhourS, WareD, SteinL. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L. ). DNA Res, 2002, 9: 199-207[本文引用:2]
[36]
MatsumotoT, Wu JZ, KanamoriH, KatayoseY. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800[本文引用:1]
[37]
Pérez-Ruiz JM, Spínola MC, KirchsteigerK, MorenoJ, SahrawyM, Cejudo FJ. Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell, 2006, 18: 2356-2368[本文引用:1]
[38]
Ostheimer GJ, HadjivassiliouH, Kloer DP, BarkanA, Matthews BW. Structural analysis of the group II intron splicing factor CRS2 yields insights into its protein and RNA interaction surfaces. J Mol Biol, 2005: 345: 51-68[本文引用:1]
[39]
Ostheimer GJ, RojasM, HadjivassiliouH, BarkanA. Formation of the CRS2-CAF2 group II intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2. J Biol Chem, 2006, 281: 4732-4738[本文引用:1]