删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

甘蓝型油菜 BnTT3基因的表达与eQTL定位分析

本站小编 Free考研考试/2021-12-26

卢坤1,2,*;*, 曲存民1,2,*;*, 李莎1,2, 赵会彦1,2, 王瑞1,2, 徐新福1,2, 梁颖1,2, 李加纳1,2,*
1 西南大学农学与生物科技学院, 重庆 400715

2 重庆市油菜工程技术研究中心, 重庆 400715

* 通讯作者(Corresponding author): 李加纳, E-mail:ljn1950@swu.edu.cn, Tel: 023-68250642 第一作者联系方式: E-mail:drlukun@swu.edu.cn (卢坤); lion4302@163.com (曲存民)
**同等贡献(Contributed equally to this work)
收稿日期:2015-01-19 接受日期:2015-07-20网络出版日期:2015-08-12基金:本研究由国家自然科学基金项目(31401412, U1302266), 国家科技支撑计划项目(2013BAD01B03-12), 重庆市主要农作物良种创新工程项目(cstc2012ggB80008), 国家现代农业产业技术体系建设专项(CARS-13), 国家高技术研究发展计划(863计划)项目(2013AA102602), 111人才引智基地建设项目(B12006)和中央高校基本科研业务费专项资金(XDJK2012A009, 2362015xk05)资助

摘要类黄酮途径中, TT3编码的4-二氢黄铜醇还原酶是参与原花色素和花青素合成的关键酶。为了明确该基因可能的上游调控网络, 利用黄籽母本GH06和黑籽父本ZY821构建的遗传图谱, 以 BnTT3基因在高世代重组自交系群体中随机选取的94个株系花后40 d种子的表达量作为性状, 采用复合区间作图法进行eQTL分析。结果共检测到5个表达量相关的eQTL, 分别位于A03、A08、A09和C01染色体, 单个eQTL解释表型变异的5.22%~24.05%。A09染色体上存在2个主效eQTL, 单个eQTL分别解释24.05%和16.55%的表型变异, 分别位于标记KS10260~KBrB019I24.15和B055B21-5~KS30880之间, 微效eQTL分布于A03、A08和C01染色体上。A09染色体上的2个主效eQTL区间(包含200 kb侧翼序列)与拟南芥、白菜、甘蓝和芸薹族近缘物种基因组同源区段具有很好的共线性关系。基因注释结果表明检测到的eQTL均为 trans-QTL, 2个主效eQTL区段共包含78个基因, 包括 MYB51 MYB52 bZIP5转录因子, 可能为 BnTT3基因的上游直接调控因子, 对这些基因功能的深入分析将有助于阐明甘蓝型油菜黄籽性状形成的分子调控机制, 为黄籽候选基因的克隆筛选奠定基础。

关键词:甘蓝型油菜; 种子; TT3; 重组自交系; 表达数量性状位点
Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L.
LU Kun1,2,**, QU Cun-Min1,2,**, LI Sha1,2, ZHAO Hui-Yan1,2, WANG Rui1,2, XU Xin-Fu1,2, LIANG Ying1,2, LI Jia-Na1,2,*
1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China

2 Chongqing Rapeseed Engineering Research Center, Chongqing 400715, China


AbstractIn flavonoid biosynthesis pathway, the key enzyme dihydroflavonol 4-reductase (DFR) involved in the proanthocyanidin and anthocyanin biosynthesis pathway is encoded by TRANSPARENT TESTA 3 ( TT3) gene. The objective of this research was to identify the upstream regulatory networks of BnTT3 using the composite interval mapping method (CIM). Hence, we performed an eQTL analysis for the transcript-level variation of BnTT3 gene in seeds at 40 days after flower (DAF) in 94 recombinant inbred lines (RILs) derived from a cross between the yellow-seeded female parent GH06 and black-seeded male parent ZY821. Five eQTLs for expression levels of BnTT3 were detected on four different chromosomes (A03, A08, A09, and C01) in B. napus, accounting for 5.22% to 24.05% of phenotypic variation. Two major eQTLs were found and located among the markers KS10260-KBrB019I24.15 and B055B21-5-KS30880 of chromosome A09, with explained 24.05% and 16.55% of phenotypic variation, respectively. Three minor eQTLs were also detected to be located on chromosomes A03, A08, and C01. The flanking sequences with 200 kb of two major eQTLs on chromosome A09 of B. napus showed well synteny to those of A. thaliana, Brassica rapa, Brassica oleracea and other Brassiceae relatives. Furthermore, the annotation results showed that they belong to the trans-QTL, containing 78 genes in the two trans-QTL regions. Some transcription factors ( MYB51, MYB52, and bZIP5) might be upstream regulatory factors associated with transcriptional regulation of BnTT3. Therefore, further study about these genes function will be helpful to elucidate the molecular mechanism of the seed coat colour formation, as well as lay the foundation for selecting candidate genes of seed coat colour in B. napus.

Keyword: Brassica napus L.; Seeds; TRANSPARENT TESTA 3; Recombinant inbred lines (RILs); Expression quantitative trait locus (eQTL)
Show Figures
Show Figures










类黄酮是植物中一类重要的次生代谢产物, 在花、叶、果实和种子颜色变化过程中起着至关重要的作用, 也有些类黄酮物质可作为抗氧化剂, 并对人类健康有益而备受关注[1, 2, 3, 4]。目前的研究表明模式植物拟南芥(Arabidopsis thaliana)种子颜色不同程度变异的主要原因是类黄酮途径中一些关键酶基因的突变, 引起拟南芥体内类黄酮物质的积累或终产物的合成异常[5]。同为十字花科植物的甘蓝型油菜(Brassica napus)与拟南芥亲缘关系很近, 其基因组编码序列保守性达到86%, 因此, 两种植物的种皮色泽变化和色素合成机理有较多相似之处。尽管在芸薹属作物中, 研究证实种皮色泽与控制类黄酮合成相关基因存在一定关联性[6, 7, 8, 9, 10], 本课题组也克隆了甘蓝型油菜苯丙烷-类黄酮代谢途径中多个透明种皮(TRANSPARENT TESTA, TT)基因家族的基因序列, 其中一些基因在黄籽油菜种子发育过程中下调表达(F3'HPAL1TTG1TT2)[11, 12, 13], 但目前的研究还主要集中于对单个基因功能的解析, 尚缺乏对这些基因上下游调控网络和调控机制的研究。
随着分子标记技术的发展, 构建的高密度分子标记连锁遗传图谱已有效地应用于数量性状基因定位, 图位克隆和分子标记辅助育种中。为了研究控制基因表达量变异的上游调控位点, Jansen和Nap[14]提出将全基因组中每个基因的表达量作为数量性状, 对其进行QTL定位分析, 即基因表达的数量性状定位分析技术(expression QTL, eQTL), 这种方法不仅有助于寻找控制这些基因转录表达模式的上游调控位点, 发掘受该基因调节的下游基因及与该基因协同作用的基因, 而且还有可能建立较为完整基因表达调控网络, 以阐明基因转录表达的调控机制, 从而在表达及调控水平上分析控制复杂性状的遗传基础[15]。目前, eQTL方法不仅成功地应用到酵母(Saccharomyces cerevisiae)、小鼠(Mus musculus)和人(Homo sapiens)的相关研究中, 而且在拟南芥、玉米(Zea mays)、小麦(Triticum aestivum)和大麦(Hordeum vulgare)等植物的研究中也取得了重要成果[16, 17, 18]
在最近的研究中, 我们发现编码4-二氢黄酮醇还原酶(dihydroflavonol 4-reductase, DFR)的TT3基因在不同来源的黄黑籽甘蓝型油菜中存在着稳定性的序列变异[19]。在类黄酮途径中, TT3基因是参与原花色素和花青素合成的重要基因, 其拟南芥突变体种皮为黄色透明[1, 20]。因此, 本研究以典型黄籽GH06与黑籽中油821为亲本构建重组自交系群体, 采用qRT-PCR检测BnTT3基因在群体株系中的相对表达量, 以复合区间作图(composite interval mapping, CIM)法对BnTT3基因表达量进行eQTL分析, 期望通过紧密连锁分子标记确定参与BnTT3基因表达调节的上游调控区段, 明确BnTT3基因的上游直接调控因子, 研究结果将有助于理解甘蓝型油菜黄籽性状形成的分子调控机制, 为黄籽主效候选基因的筛选克隆提供依据。
1 材料与方法1.1 试验材料以典型黄籽与黑籽遗传背景的GH06和中油821为亲本, 通过“ 一粒传法” 连续自交10代建成高世代重组自交系群体。2011— 2012年在重庆市北碚歇马镇试验基地种植该群体, 9月20日播种育苗, 10月30日移栽至大田, 无重复, 随机排列, 每小区3行, 每行15株, 田间按常规生产方式管理。任选94个株系, 在油菜盛花期选6株正常生长的植株标记主花序开花时间, 在花后40 d, 取主花序天然授粉结实的种子, 以家系为混合单位, 用液氮冷冻后, 于-80℃超低温冰箱保存备用。
1.2 植物总RNA提取以植物总RNA提取试剂盒(天根生化科技有限公司, 北京)提取各株系总RNA, 用DNase I (宝生生物工程有限公司, 大连)消化RNA样品中痕量基因组DNA, 然后各取1 μ g总RNA, 以Oligo dT-Adaptor Primer进行反转录[TaKaRa RNA PCR Kit (AMV) Ver.3.0], 合成总cDNA第1链, 并参照Qu等[21]的方法, 用Bn26S检测反转录效率。
1.3 以qRT-PCR方法检测BnTT3基因在各株系种子中的表达量 采用qRT-PCR方法检测BnTT3基因在亲本GH06和ZY821及后代株系花后40 d种子中的相对表达量。扩增引物为BnTT3F (5′ -TTCCACATAGCAACTCCCATG-3′ )和BnTT3R (5′ -TTATCCCCAACACTCCATTCAC-3′ ), 扩增反应体系含0.5 μ L (约100 ng)模板cDNA、10 μ L SYBR Premix Ex TaqII (2× )、10 μ mol· L-1上下游引物各0.8 μ L, 加ddH2O至20 μ L。用实时荧光定量PCR仪Bio-Rad CFX96进行扩增反应, 程序为95℃预变性2 min, 40个循环(95℃变性10 s, 60℃退火20 s), 扩增结束后, 进行熔解曲线分析。用Bio-Rad CFX Manager记录分析qRT-PCR结果, 由软件自动设定阈值线。根据参照基因ACT7 (5′ -T GGGTTTGCTGGTGACGAT/TGCCTAGGACGACCAACAATACT-3′ ); UBC21 (5′ -CCTCTGCAGCCTCCTCAAGT/CA TATCTCCCCTGTCTTGAAATGC-3′ )的2-Δ Δ CT法计算目的基因相对表达量[22], 3次重复。通过SPSS 13.0软件对数据进行t检验。
1.4 遗传图谱构建与eQTL分析由重庆市油菜工程技术研究中心构建的遗传图谱含19个连锁群, 包括1089个标记位点(451个SRAP标记, 456个SSR标记, 97个RAPD标记和75个IBP标记), 覆盖基因组长度约为2775 cM, 标记间的平均距离为2.54 cM。
采用QTL分析软件Windows QTL Cartographer 2.5及复合区间作图(composite interval mapping, CIM)法, 将甘蓝型油菜BnTT3基因相对表达量作为考察性状, 参照曲存民等[23, 24]的方法, 根据BnTT3在各株系中的表达量进行eQTL定位和效应检测[25]
1.5 eQTL区段序列生物信息学分析通过克隆获得的BnTT3基因序列进行BlastN本地比对, 根据比对结果确定基因在染色体上的位置, 并提取eQTL连锁标记上下游各200 kb的侧翼序列进行基因注释, 如果在此区间内存在BnTT3基因则该eQTL为cis-QTL, 表明基因自身定位于此; 如果此区段未发现该基因, 则该eQTL为trans-QTL, 表明该eQTL可能为该基因上游调控基因的所在位点。在Brassica database (BRAD, http:// brassicadb.org/brad/)和Genoscope (http://www.genoscope. cns.fr/brassicanapus/)网站进行甘蓝型油菜中eQTL区段与近缘或亲本物种的共线性分析。

2 结果与分析2.1 BnTT3基因的qRT-PCR分析qRT-PCR检测结果表明, BnTT3基因在甘蓝型油菜亲本中的表达模式类似, 其表达量均在花后40 d达到峰值, 且在黑籽亲本ZY821中的表达量显著高于黄籽亲本GH06 (图1)。
图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 BnTT3在黄籽GH06、黑籽ZY821甘蓝型油菜亲本和不同灌浆时种子中表达差异
以黑籽亲本ZY821花后10 d种子的表达量为参照计算基因的相对表达量。Fig. 1 Expression patterns of BnTT3 genes from the yellow- (GH06) and black-seeded (ZY821) rapeseed at seed-filling stage
Relative gene expression levels were normalized according to the expression values of 10 days old seed in ZY821.

统计分析结果表明, BnTT3基因在后代株系花后40 d种子中表达量呈现典型的数量遗传模式— — 近似正态分布(图2), 其表达不是由单个上游主效基因控制, 而是由多个基因综合调控的, 可以将BnTT3基因表达量作为数量性状进行eQTL分析。
图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 重组自交系群体BnTT3基因表达量的频率分布Fig. 2 Frequency distribution of BnTT3 expression levels in B. napus RILs


2.2BnTT3基因表达量的eQTL定位分析利用复合区间作图法共检测到5个BnTT3基因表达量相关的eQTL, 分别位于A03、A08、A09和C01染色体上(图3), 共解释表型总变异的59.62%, 单个eQTL可解释性状表型变异的变幅介于5.22%~24.05%之间(表1)。其中在A09染色体上存在2个主效eQTL, 单个eQTL分别解释24.05%和16.55%的表型变异, 介于标记KS10260~ KBrB019I24.15和B055B21-5~KS30880之间, 而在A03、A08与C01染色体上仅检测到BnTT3基因的微效eQTL (图3)。为了确定A09染色体上2个主效eQTL的类型, 从甘蓝型油菜基因组序列中提取与eQTL连锁标记SWUA09-17和B010D15-4上下游各200 kb序列, 并以BlastN分析BnTT3基因是否位于该区段。根据eQTL分类标准, 在上述连锁标记相关的eQTL区段未发现BnTT3基因, 因此这些eQTL可能均属于trans-QTL, 即在该标记附近存在BnTT3基因的上游调控基因, 对BnTT3基因的表达起着关键调控作用。从加性效应值还可以看出, BnTT3基因eQTL的增效作用均来自父本ZY821的等位基因。
表1
Table 1
表1(Table 1)
表1 甘蓝型油菜重组自交系中BnTT3基因的eQTL分析 Table 1 eQTLs for BnTT3genes detected from the RILs in B. napus
eQTL染色体
Chr.
连锁标记
Linked marker
位置
Position
LOD加性效应
Additive effect
贡献率
R2 (%)
qTT3-3-1A03SWUA03-1021-26858.152.59-0.465.22
qTT3-8-2A08SWUA08-481-220A43.143.43-0.157.37
qTT3-9-3A09SWUA09-1732.098.11-0.3824.05
qTT3-9-4A09B010D15-472.096.17-0.4216.55
qTT3-11-5C01SWUC01_123933.293.180.256.43

表1 甘蓝型油菜重组自交系中BnTT3基因的eQTL分析 Table 1 eQTLs for BnTT3genes detected from the RILs in B. napus

图3
Fig. 3
Figure OptionViewDownloadNew Window
图3 以复合区间作图法检测BnTT3基因表达量的eQTLFig. 3 eQTL detection for the expression of BnTT3 with CIM


2.3 主效eQTL区段序列的生物信息学分析为了分析A09染色体上的trans-QTL区段是否存在对TT3基因起调控作用的上游基因, 我们对主效eQTL连锁标记SWUA09-17和B010D15-4上下游各200 kb侧翼序列进行了本地BlastN比对, 结果发现该区间在白菜、甘蓝和油菜染色体上对应的具体位置存在一定的差异(表2), 但它们与芸薹族其他物种间均具有较好的共线性(图4-A, B), 油菜A/C亚基因组间也具有很好的共线性(图4-C, D), 说明该区段序列在进化过程中相对比较保守, 在芸薹属物种中同源性较高, 适宜于基因注释比较分析。
表2
Table 2
表2(Table 2)
表2 连锁标记在芸薹属测序物种染色体上的物理位置 Table 2 Physical locations of linked markers in chromosome of Brassica species sequenced
引物名称
Primer
引物序列
Primer sequences (5'-3')
白菜
B. rapa
甘蓝
B. oleracea
甘蓝型油菜
B. napus
SWUA09-17-FTGAATGAAAGCAAAAGAAATTGA09:34729163-34729142C07:40557582-40557562A09:30733764-30733743
SWUA09-17-RATTGGGAGGGTTGTGCTTCA09:34728947-34728965C08:36787881-36787899A09:30733550-30733568
B010D15-4-FTCTCCTTCTCCTCAACCACGA09:26352336-26352317C08:26703379-26703360C08:24124449-4124430
B010D15-4-RGACGTCGTTTCTTCCAGCTCA09:26351433-26351452C08:26702457-26702476C08:24123528-24123547

表2 连锁标记在芸薹属测序物种染色体上的物理位置 Table 2 Physical locations of linked markers in chromosome of Brassica species sequenced

图4
Fig. 4
Figure OptionViewDownloadNew Window
图4 两个主要trans-QTL区段侧翼序列在芸薹属及其近缘物种中的共线性
A和C: qTT3-9-3区段侧翼序列共线性分析; B和D: qTT3-9-4区段侧翼序列的共线性分析。Fig. 4 Collinearity of flanking sequences of two major trans-QTLs between Brassicaspecies and their relatives
A and C: collinearity analysis of flanking sequence in trans-QTL qTT3-9-3; B and D: collinearity analysis of flanking sequence in trans-QTL qTT3-9-4.

基因注释结果发现, qTT3-9-3区段(连锁标记SWUA09-17)中共有58个基因, qTT3-9-4区段(连锁标记B010D15-4)中存在20个基因, 但在区间范围内并未发现BnTT3和类黄酮途径其他相关基因, 进一步证实检测到的eQTL可能属于trans-QTL。此外, 这2个trans-QTL区段不仅包含重要的转录因子(MYB51MYB52bZIP5), 还存在一些与转运及抗病相关的基因(见表1)。前人研究已证实MYBMYCbZIP等转录因子具有调节类黄酮次生代谢途径的功能[26, 27, 28, 29], 因此, 对2个主效eQTL区段这类转录因子的深入分析有助于明确甘蓝型油菜类黄酮途径的调控代谢机制。
表1
Supplementary table 1
表1(Supplementary table 1)
表1 两个主要eQTL区段基因列表 Supplementary table 1 List of genes in the two major eQTLs regions
eQTL基因号
Gene number
拟南芥AGI号
AGI number in Arabidopsis
功能注释
Functional annotation
qTT3-9-3BnaA09g44470DAT5G06520SWAP (Suppressor-of-White-APricot)/surp domain-containing protein
BnaA09g44500DAT1G18570Myb domain protein 51 (MYB51)
BnaA09g44510DAT1G18560BED zinc finger
BnaA09g44520DAT1G74050Ribosomal protein L6 family protein
BnaA09g44530DAT1G18530EF hand calcium-binding protein family
BnaA09g44540DAT1G18520Tetraspanin11 (TET11)
BnaA09g44550DAT1G18500Methylthioalkylmalate synthase-like 4 (MAML-4)
BnaA09g44560DAT1G18470Transmembrane Fragile-X-F-associated protein
BnaA09g44570DAT1G18460Alpha/beta-Hydrolases superfamily protein
BnaA09g44590DAT1G18390Protein kinase superfamily protein
BnaA09g44600DAT1G18370HINKEL (HIK)
BnaA09g44610DAT3G10110Maternal effect embryo arrest 67 (MEE67)
BnaA09g44620DAT1G18290Unknown protein
BnaA09g44630DAT1G18280Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein
BnaA09g44640DAT1G18280Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein
BnaA09g44650DAT1G18280Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein
BnaA09g44660DAT5G26830Threonyl-tRNA synthetase
BnaA09g44680DAT1G18170FKBP-like peptidyl-prolyl cis-trans isomerase family protein
BnaA09g44690DAT1G18150ATMPK8
BnaA09g44700DAT1G18100E12A11
BnaA09g44710DAT1G18080ATARCA
BnaA09g44720DAT1G18070Translation elongation factor EF1A/initiation factor IF2 gamma family protein
BnaA09g44730DAT1G18040Cyclin-dependent kinase D1
BnaA09g44740DAT1G7669012-oxophytodienoate reductase 2 (OPR2)
qTT3-9-3BnaA09g44750DAT1G18010Major facilitator superfamily protein
BnaA09g44760DAT1G17980Poly(A) polymerase 1 (PAPS1)
BnaA09g44770DAT5G26830Threonyl-tRNA synthetase
BnaA09g44780DAT1G17950Myb domain protein 52 (MYB52)
BnaA09g44790DAT1G17950Myb domain protein 52 (MYB52)
BnaA09g44800DAT1G17880Basic transcription factor 3 (BTF3)
BnaA09g44810DAT1G17820Putative integral membrane protein conserved region (DUF2404)
BnaA09g44820DAT1G17810Beta-tonoplast intrinsic protein (BETA-TIP)
BnaA09g44830DAT1G17790DNA-binding bromodomain-containing protein
BnaA09g44840DAT1G17720ATB BETA
BnaA09g44850DAT1G17710Pyridoxal phosphate phosphatase-related protein
BnaA09g44860DAT1G45403Membrane protein
BnaA09g44870DAT2G04040TX1
BnaA09g44880DAT1G17600Disease resistance protein (TIR-NBS-LRR class) family
BnaA09g44890DAT1G17600Disease resistance protein (TIR-NBS-LRR class) family
BnaA09g44900DAT1G17610Disease resistance protein (TIR-NBS class)
BnaA09g44910DAT1G17610Disease resistance protein (TIR-NBS class)
BnaA09g44920DAT1G17590Nuclear factor Y, subunit A8 (NF-YA8)
BnaA09g44930DAT1G17610Disease resistance protein (TIR-NBS class)
BnaA09g44940DAT5G48770Disease resistance protein (TIR-NBS-LRR class) family
BnaA09g44950DAT1G17580Myosin 1 (MYA1)
BnaA09g44970DAT1G17520Homeodomain-like/winged-helix DNA-binding family protein
BnaA09g44980DAT1G17500ATPase E1-E2 type family protein/haloacid dehalogenase-like hydrolase family protein
BnaA09g44990DAT1G17455ELF4-like 4 (ELF4-L4)
BnaA09g45000DAT3G10070TBP-associated factor 12 (TAF12)
BnaA09g45010DAT1G17420Lipoxygenase 3 (LOX3)
BnaA09g45020DAT1G17310MADS-box transcription factor family protein
BnaA09g45030DAT1G17290Alanine aminotransferas (AlaAT1)
BnaA09g45040DAT1G17285Unknown protein
BnaA09g45050DAT1G17280Ubiquitin-conjugating enzyme 34 (UBC34)
BnaA09g45060DAT1G17200Uncharacterised protein family (UPF0497)
BnaA09g45070DAT1G17180Glutathione S-transferase TAU 25 (GSTU25)
BnaA09g45080DAT1G17180Glutathione S-transferase TAU 25 (GSTU25)
BnaA09g45090DAT1G17180Glutathione S-transferase TAU 25 (GSTU25)
BnaA09g45100DAT1G17160PfkB-like carbohydrate kinase family protein
BnaA09g45110DAT1G17160PfkB-like carbohydrate kinase family protein
BnaA09g45130DAT1G17140Interactor of constitutive active rops 1 (ICR1)
BnaA09g45140DAT1G17130Family of unknown function (DUF572)
BnaA09g45150DAT1G17120Cationic amino acid transporter 8 (CAT8)
BnaA09g45160DAT1G17090Unknown protein
BnaA09g45170DAT1G17080Ribosomal protein L18ae family
BnaA09g45180DAT1G17070GC-rich sequence DNA-binding factor-like protein with tuftelin interacting domain
qTT3-9-4BnaC08g21300DAT3G497001-aminocyclopropane-1-carboxylate synthase 9 (ACS9)
BnaC08g21310DAT3G49710Pentatricopeptide repeat (PPR) superfamily protein
BnaC08g21320DAT3G49720Unknown protein
BnaC08g21330DAT3G49725GTP-binding protein, HflX
BnaC08g21340DAT3G49725GTP-binding protein, HflX
BnaC08g21350DAT3G49730Tetratricopeptide repeat (TPR)-like superfamily protein
BnaC08g21360DAT3G49750Receptor like protein 44 (RLP44)
BnaC08g21370DAT3G49760Basic leucine-zipper 5 (bZIP5)
BnaC08g21380DAT3G49780Phytosulfokine 4 precursor (PSK4)
BnaC08g21390DAT2G22030Galactose oxidase/kelch repeat superfamily protein
BnaC08g21400DAT3G49845Unknown protein
BnaC08g21410DAT3G28710ATPase, V0/A0 complex, subunit C/D
BnaC08g21420DAT3G28700Protein of unknown function (DUF185)
BnaC08g21430DAT3G49850Telomere repeat binding factor 3 (TRB3)
BnaC08g21440DAT3G49850Telomere repeat binding factor 3 (TRB3)
BnaC08g21450DAT3G49880Glycosyl hydrolase family protein 43
BnaC08g21460DAT3G49890Unknown protein
BnaC08g21470DAT3G49900Phototropic-responsive NPH3 family protein
BnaC08g21480DAT3G49910Translation protein SH3-like family protein
BnaC08g21490DAT3G49940LOB domain-containing protein 38 (LBD38)
BnaC08g21500DAT3G50070CYCLIN D3
BnaC08g21520DAT1G66950Pleiotropic drug resistance 11 (PDR11)

表1 两个主要eQTL区段基因列表 Supplementary table 1 List of genes in the two major eQTLs regions


3 讨论前人研究认为色素化合物及相关酶类是影响甘蓝型油菜种子发育过程中种皮色泽变化的重要因子, 包括原花色素、多酚和木质素及其衍生物等重要次生代谢物质, 而拟南芥种皮颜色发生不同程度变异的主要原因是一些类黄酮生物合成关键酶基因的突变[9, 30, 31]。迄今为止, 植物花青素和类黄酮物质代谢途径研究比较深入, 已鉴定出23个TT基因位点, 包括12个编码类黄酮生物合成相关酶的结构基因位点, 6个编码控制类黄酮生物合成的调控基因位点以及5个未知的基因位点[30]。其中, TT3基因编码4-二氢黄酮醇还原酶, 该酶在花青素苷积累与类黄酮的合成中起重要作用, 主要负责合成花青素苷的直接底物— 原花青素苷元(黄烷-3, 4二元醇), 其突变体导致种皮中花青素和原花色素合成受阻, 种皮黄色透明, 与野生型的黑色种皮区别明显[1, 20]。此外, TT3基因不仅在圆叶牵牛(Ipomoea purpurea)和水稻胚乳中起关键作用[32, 33], 在芸薹属埃塞俄比亚芥(Brassica carinata)和芥菜型油菜(Brassica juncea)中也是种皮色泽性状遗传调控网络中的关键基因[34, 35]。前人研究表明, 甘蓝型油菜BnTT3是原花色素与花青素代谢途径关键调控基因[20], 其表达量在种皮发育中后期达到峰值, 且黄黑籽间差异极显著, 提示BnTT3在甘蓝型油菜种皮发育后期对黄黑籽差异的形成可能具有重要调控作用。研究还发现, 其他TT基因在黄黑籽甘蓝型油菜中表达模式与BnTT3类似, 仅存在表达量上的差异[21], 表明TT基因可能不是导致甘蓝型油菜黄黑籽差异的主效基因, 其表达差异很可能受上游调控因子调节。本研究也发现在黄黑籽甘蓝型油菜亲本材料中, BnTT3的表达量均随种子发育而不断上升, 并在花后40 d达到峰值, 且黄黑籽材料的表达量差异也在这个时期最明显, 表达模式与前人研究结果完全一致。由于BnTT3在黄黑籽甘蓝型油菜亲本花后40 d种子的表达量差异最大, 因此, 本研究选择了这个时期进行群体株系qRT-PCR检测和eQTL分析, 研究结果表明我们对BnTT3基因的表达量进行了准确的eQTL定位, 这说明基于前期研究结果, 准确选择eQTL定位分析的样品有助于获得更好的eQTL分析结果。
本研究共检测到5个BnTT3基因表达量相关的eQTL, 分别位于A03、A08、A09和C01染色体上。其中, 在A09染色体上检测到2个eQTL (qTT3-9-3qTT3-9-4), 其置信区间分别位于种皮色泽主效QTL(BnSCA09)的上游与下游[36], 并与种皮色素相关的QTL区间相吻合, 表明这2个eQTL区间内的候选基因可能与种皮色泽主效QTL候选基因相同, 其不仅能够调节BnTT3基因的表达, 而且能控制甘蓝型油菜种皮色素合成和色泽差异的形成。通过连锁标记侧翼序列比对分析发现, 2个eQTL区间的序列在芸薹属内同源性较高, 相应区间基因注释后并未发现BnTT3及类黄酮途径其他相关基因, 说明本研究定位的eQTL很可能属于trans-QTL, 包含调节BnTT3基因的上游调控因子。基因功能分析发现, 2个R2R3-MYB转录因子MYB51MYB52位于上游主效QTL置信区间内。拟南芥中的研究证实MYB51是调节吲哚硫苷生物合成的重要基因, 同时介导水杨酸和乙烯信号途径[37]; MYB52主要参与调节次生细胞壁的形成, 介导脱落酸信号途径[38]。目前, 2个基因在油菜中功能尚未被证实, 现有证据尚无法确认它们是否参与调控类黄酮途径。但大量的研究已经表明R2R3-MYB类转录因子不仅广泛参与植物苯丙烷-类黄酮代谢途径中的多种初生和次生代谢过程[39, 40], 同时还介导水杨酸、乙烯及脱落酸等多个信号途径[37, 38]。有研究发现, 生长素、乙烯及茉莉酸等途径可影响类黄酮的合成与积累[20, 41]。因此, 这2个MYB转录因子是否通过植物激素信号途径间接影响类黄酮代谢途径, 实现其对BnTT3基因的调控值得进一步深入研究。
The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126: 485-493[本文引用:3]
[2]Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 2002, 5: 218-223[本文引用:1]
[3]Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006, 57: 405-430[本文引用:1]
[4]Routaboul J M, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 2006, 224: 96-107[本文引用:1]
[5]Haughn G, Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci, 2005, 10: 472-477[本文引用:1]
[6]Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty P B, Li G. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009, 69: 553-563[本文引用:1]
[7]Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet, 2014, 127: 339-347[本文引用:1]
[8]Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 50: 840-854[本文引用:1]
[9]Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L. TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009, 281: 109-123[本文引用:2]
[10]Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon R J. Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with cand idate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed, 2013, 132: 382-389[本文引用:1]
[11]Chen A H, Chai Y R, Li J N, Chen L. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J Biochem Mol Biol, 2007, 40: 247-260[本文引用:1]
[12]Wei Y L, Li J N, Lu J, Tang Z L, Pu D C, Chai Y R. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep, 2007, 34: 105-120[本文引用:1]
[13]Xu B B, Li J N, Zhang X K, Wang R, Xie L L, Chai Y R. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassica napus. J Plant Physiol, 2007, 164: 350-363[本文引用:1]
[14]Jansen R C, Nap J P. Genetical genomics: the added value from segregation. Trends Genet, 2001, 17: 388-391[本文引用:1]
[15]陈颖, 汪旭升, 许玲莉, 沈勤, 王晓冬, 陆璐. 基因表达数量性状定位的研究进展. 生命科学, 2009, 21: 38-42
Chen Y, Wang X S, Xu L L, Shen Q, Wang X D, Lu L. Advance in study of gene expression quantitative trait loci (eQTL). Chin Bull Life Sci, 2009, 21: 38-42 (in Chinese with English abstract)[本文引用:1]
[16]Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet, 2009, 10: 184-194[本文引用:1]
[17]Kliebenstein D. Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol, 2009, 60: 93-114[本文引用:1]
[18]Michaelson J J, Loguercio S, Beyer A. Detection and interpretation of expression quantitative trait loci (eQTL). Methods, 2009, 48: 265-276[本文引用:1]
[19]曲存民, 卢坤, 刘水燕, 卜海东, 付福友, 王瑞, 徐新福, 李加纳. 黄黑籽甘蓝型油菜类黄酮途径基因SNP位点检测分析. 作物学报, 2014, 40: 1914-1924
Qu C, Lu K, Liu S Y, Bu H D, Fu F Y, Wang R, Xu X F, Li J N. SNP detection and analysis of genes for flavonoid pathway in yellow- and black-seeded Brassica napus L. Acta Agron Sin, 2014, 40: 1914-1924 (in Chinese with English abstract)[本文引用:1]
[20]Li T, Jia K P, Lian H L, Yang X, Li L, Yang H Q. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem Biophys Res Commun, 2014, 454: 78-83[本文引用:4]
[21]Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Tang Z, Li J. Differential accumulation of phenolic compounds and expression of related genes in black-and yellow-seeded Brassica napus. J Exp Bot, 2013, 64: 2885-2898[本文引用:2]
[22]Wu G, Zhang L, Wu Y H, Cao Y L, Lu C M. Comparison of five endogenous feference Genes for specific PCR detection and quantification of Brassica napus. J Agric Food Chem, 2010, 58: 2812-2817[本文引用:1]
[23]曲存民, 付福友, 刘列钊, 王家丰, 毛丽佳, 原小燕, 谌利, 李加纳. 甘蓝型油菜胚色素成分的QTL定位. 作物学报, 2009, 35: 286-294
Qu C M, Fu F Y, Liu L Z, Wang J F, Mao L J, Yuan X Y, Chen L, Li J N. QTL mapping of embryonic pigment components in Brassica napus. Acta Agron Sin, 2009, 35: 286-294 (in Chinese with English abstract)[本文引用:1]
[24]曲存民, 付福友, 卢坤, 谢景梅, 刘晓兰, 黄杰恒, 李波, 王瑞, 谌利, 唐章林, 李加纳. 不同环境中甘蓝型油菜种皮木质素含量的QTL定位. 作物学报, 2011, 37: 1398-1405
Qu C M, Fu F Y, Lu K, Xie J M, Liu X L, Huang J H, Li B, Wang R, Chen L, Tang Z L, Li J N. Identification of QTLs for lignin content of seed coat in Brassica napus L. in different environments. Acta Agron Sin, 2011, 37: 1398-1405 (in Chinese with English abstract)[本文引用:1]
[25]Land er E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199[本文引用:1]
[26]刘仕芸, 黄艳岚, 张树珍. 植物花青素生物合成中的调控基因. 植物生理学通讯, 2006, 42: 747-754
Liu S Y, Huang Y L, Zhang S Z. Regulatory gene of anthocyanin biosynthesis in plant. Plant Physiol Commun, 2006, 42: 747-754 (in Chinese with English abstract)[本文引用:1]
[27]沈忠伟, 许昱, 夏犇, 李建粤. 植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用. 分子植物育种, 2008, 6: 542-548
Shen Z W, Xu Y, Xia B, Li J Y. Transcription factors involved in plant flavonoid biosynthesis of secondary metabolismand its application in genetic engineering. Mol Plant Breed, 2008, 6: 542-548 (in Chinese with English abstract)[本文引用:1]
[28]Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate- mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell, 2011, 23: 1795-1814[本文引用:1]
[29]Marles M, Gruber M Y. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251-262[本文引用:1]
[30]叶小利, 李加纳, 唐章林, 梁颖, 谌利. 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001, 27: 550-556
Ye X L, Li J N, Tang Z L, Liang Y, Chen L. Study on seed coat color and related characters of Brassica napus. Acta Agron Sin, 2001, 27: 550-556 (in Chinese with English abstract)[本文引用:2]
[31]Kim S, Binzel M L, Park S, Yoo K S, Pike L M. Inactivation of DFR (Dihydroflavonol 4-reductase) gene transcription results in blockage of anthocyanin production in yellow onions (Allium cepa). Mol Breed, 2004, 14: 253-263[本文引用:1]
[32]Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J, 2007, 49: 91-102[本文引用:1]
[33]Park K I, Ishikawa N, Morita Y, Choi J D, Hoshino A, Iida S. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J, 2007, 49: 641-654[本文引用:1]
[34]Marles M, Gruber M Y, Scoles G J, Muir A D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry, 2003, 62: 663-672[本文引用:1]
[35]Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H. Cloning and expression analysis of Dihydroflavonol 4-Reductase gene in Brassica juncea. Acta Agron Sin, 2008, 34: 1-7[本文引用:1]
[36]曲存民. 甘蓝型油菜种皮色泽形成机理研究. 西南大学博士学位论文, 重庆, 2012. pp 55-62
Qu C M. Studies on the Mechanism of Formation of Seed Coat Colour in Brassica napus L. PhD Disseration of Southwest University, Chongqing, China, 2012. pp 55-62 (in Chinese with English abstract)[本文引用:1]
[37]Frerigmann H, Gigolashvili T. MYB34, MYB51 and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant, 2014, 7: 814-828[本文引用:2]
[38]Park M Y, Kang J Y, Kim S Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells, 2011, 31: 447-454[本文引用:2]
[39]Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 2000, 12: 2383-2393[本文引用:1]
[40]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447-456[本文引用:1]
[41]Lewis D R, Ramirez M V, Miller N D, Vallabhaneni P, Ray W K, Helm R F, Winkel B S, Muday G K. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol, 2011, 156: 144-164[本文引用:1]
相关话题/基因 序列 种子 植物 遗传