摘要为了研究低氮密植栽培对水稻分蘖发生及成穗率、干物质积累及其转化、氮素利用率和产量的影响, 2012—2013年以超级稻Y两优1号为材料, 在湖南长沙和海南澄迈进行了施氮量(75、150、225 kg N hm-2)与栽插密度(68、40、27、19穴 m-2), 每穴苗数(单、双、三本 穴-1)与栽插密度(40、27、19、14穴 m-2)的大田栽培试验。结果表明, 在基本苗数相同或相近的条件下, 减苗增密在齐穗期和成熟期的干物质量及产量分别比增苗减密高10.5%、5.2%和2.9%, 有效穗数对产量的贡献最大, 达到显著水平; 在低氮密植条件下, 有效分蘖期缩短6 d左右, 分蘖成穗率、表观转化率、氮肥偏生产力和氮素籽粒生产效率分别提高10.9%、21.0%、150.6%和19.6%。在施氮量为75 kg N hm-2的密植(40~68穴 m-2)条件下, 齐穗期和成熟期的干物质量及长沙点产量分别比中、高氮(150~225 kg N hm-2)常规密度(19~27穴 m-2)低3.2%、7.5%和1.2%, 但差异不显著, 而澄迈点产量在2012年和2013年分别比之低5.2%和高9.1%, 且差异均达显著水平。在施氮量为150 kg N hm-2的密植条件下, 成熟期干物质量比高氮常规密度低1.7%, 但齐穗期干物质量和产量比高氮常规密度高10.3%和3.3%。因此, 超级稻采用低氮密植栽培, 在100~150 kg N hm-2和40穴 m-2条件下提早了够苗期, 增加了有效穗数, 提高了分蘖成穗率和结实率, 加之齐穗期适宜的干物质积累和较高的表观转化率, 有利于高产的形成和氮肥利用率的提高。
关键词:超级稻; 低氮密植栽培; 产量; 干物质; 氮素利用率 Effect of Low Nitrogen Rate Combined with High Plant Density on Grain Yield and Nitrogen Use Efficiency in Super Rice XIE Xiao-Bing1, ZHOU Xue-Feng1, JIANG Peng2, CHEN Jia-Na1, ZHANG Rui-Chun1, WU Dan-Dan1, CAO Fang-Bo1, SHAN Shuang-Lü1, HUANG Min1, ZOU Ying-Bin1,* 1Agronomy College of Hunan Agricultural University, Changsha 410128, China
2 Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang 618000, China
AbstractIn order to study the impacts of low nitrogen rate combined with high plant density on tillering, earbearing tiller percentage, dry matter accumulation, apparent transformation rate, N-use efficiency and grain yield, field experiments with three nitrogen rates (75, 150, and 225 kg N ha-1) and four plant densities (68, 40, 27, and 19 hill m-2) as well as with three levels of number of seedlings per hill (1, 2, and 3 seedling(s) hill-1) and four plant densities (40, 27, 19, and 14 hill m-2) were conducted using super rice cultivar Y-liangyou 1 at Changsha, Hunan Province and Chengmai, Hainan Province in 2012-2013. The results showed that when seedlings per unit area were the same or approximate in combination with reducing seedlings per hill and increasing density (RSID), the dry matter accumulated 10.5% and 5.2% more than those with increasing seedlings per hill and reducing density (ISRD) at heading and maturity, respectively. RSID also produced 2.9% higher grain yield than ISRD. Panicles m-2 had the highest and significant contribution to grain yield in RSID. Productive tillering stage was shorter by six days, and earbearing tiller percentage, apparent transformation rate (ATR), partial factor productivity of applied nitrogen (PEP) and internal utilization efficiency of nitrogen (IE) were respectively higher by 10.9%, 21.0%, 150.6%, and 19.6% under low nitrogen rate (75-150 kg N ha-1) combined with high plant density (40-68 hills m-2) than under higher nitrogen rate (225 kg N ha-1) combined with low plant density (19-27 hills m-2). The combination of applying 75 kg N ha-1 and transplanting 40-68 hills m-2 produced 3.2% and 7.5% biomass less than those of applying 150-225 kg N ha-1 and transplanting 19-27 hills m-2 at heading and maturity, respectively, but the differences were not significant. Meanwhile, the former combination decreased 1.2% and 5.2% grain yield at Changsha in two years and at Chengmai in 2012, respectively, while increased 9.1% at Chengmai in 2013, and the differences were significant at Chengmai. However, the combination of applying 150 kg N ha-1 and transplanting 40-68 hills m-2 produced 10.3% biomass and 3.3% grain yield more than that of applying 225 kg N ha-1 and transplanting 19-27 hills m-2, except for biomass decreased 1.7% at maturity. Therefore, the adoption of low nitrogen rate (100-150 kg N ha-1) combined with high planting density (40 hills m-2) would improve both grain yield and N-use efficiency for super rice due to reaching the projected tillers earlier, increasing panicles, improving earbearing tiller percentage and seed setting rate, and having suitable biomass and higher ATR at heading stage.
Keyword:Super rice; Cultivation with low nitrogen rate and high planting density; Grain yield; Dry matter; Nitrogen use efficiency Show Figures Show Figures
2 结果与分析2.1 施氮量与栽插密度对水稻产量及其构成的影响2012年长沙和澄迈点施氮量和栽插密度对水稻产量影响达到显著或极显著水平, 但施氮量与密度的互作对产量影响不显著; 2013年长沙点施氮量及其与密度的互作和澄迈点栽插密度对产量影响达到极显著水平, 而其余对产量影响不显著(表1)。由表2可知, 2012— 2013年两点产量随着施氮量和密度的增加表现为增加趋势, 其中密植处理(D1、D2)的产量显著高于常规密度(D3、D4), 除2013年澄迈点外, 中氮(N2)和高氮(N3)水平的产量显著高于低氮水平(N1), 但中氮与高氮之间产量差异不显著。2013年澄迈在低氮水平(N1D1, 8.37 t hm-2)下获得最高产量, 其余在高氮水平下获得, 分别为N3D1 (9.39 t hm-2, 2012年澄迈)、N3D2 (11.12 t hm-2, 2012年长沙)和N3D3 (8.62 t hm-2, 2013年长沙), 而最低产量均为N1D4。从低氮水平密植处理和高氮水平常规密度的产量来看, 2012年澄迈、2013年长沙在低氮水平下密植处理的平均产量分别为8.18 t hm-2和8.13 t hm-2, 略低于中、高氮水平常规密度的平均产量(8.64 t hm-2和8.63 t hm-2、8.24 t hm-2和8.59 t hm-2), 而2012年长沙点在低氮水平下密植处理的平均产量(10.29 t hm-2)介于中、高氮水平之间, 2013年澄迈点(8.32 t hm-2)则比中、高氮水平高; 然而除2013年长沙点中氮水平下密植处理的平均产量(8.52 t hm-2)略低于高氮水平常规密度的产量(8.59 t hm-2)外, 其余均高于高氮水平。 表1 Table 1 表1(Table 1)
表1 不同施氮量和每穴苗数与栽插密度对产量影响的方差分析 Table 1 Analysis of variance of grain yield affected by transplanting densities under different N application rates and seedlings per hill
地点 Site
处理 Treatment
2012
2013
湖南长沙 Changsha, Hunan
栽插密度 Transplanting densities (D)
4.49*
2.77ns
施氮量 N application rates (N)
6.16* *
25.35* *
栽插密度× 施氮量 (D× N)
0.73ns
4.58* *
栽插密度 Transplanting densities (M)
0.97ns
7.84* *
每穴苗数 Seedlings per hill (S)
8.08* *
5.37*
栽插密度× 每穴苗数(M× S)
0.29ns
0.46ns
海南澄迈 Chengmai, Hainan
栽插密度 Transplanting densities (D)
9.71* *
11.57* *
施氮量 N application rates (N)
45.67* *
0.37ns
栽插密度× 施氮量 (D× N)
1.57ns
1.64ns
栽插密度 Transplanting densities (M)
4.08*
16.09* *
每穴苗数 Seedlings per hill (S)
9.17* *
16.42* *
栽插密度× 每穴苗数(M× S)
0.78ns
0.51ns
The data in table are F-values. D and M represent the planting density of experiment 1 and experiment 2, respectively.* Significant at the 0.05 probability level based on analysis of variance. * * Significant at the 0.01 probability level based on analysis of variance. ns denotes non-significance based on analysis of variance. 表中的数值为F值, D和M分别代表试验1和试验2密度的简称。* 表示差异达到0.05的显著水平, * * 表示差异达到0.01的显著水平, ns表示差异不显著。
表1 不同施氮量和每穴苗数与栽插密度对产量影响的方差分析 Table 1 Analysis of variance of grain yield affected by transplanting densities under different N application rates and seedlings per hill
表2 施氮量与栽插密度对产量及其构成的影响 Table 2 Effect of N application rates and transplanting densities on grain yield and yield components
处理 Treatment
2012
2013
有效穗数 Panicles m-2
每穗粒数 Spikelets per panicle
总颖花数 Spikelets m-2 (×103)
结实率 Seed setting rate (%)
千粒重 1000-grain weight (g)
产量 Grain yield (t hm-2)
有效穗数 Panicles m-2
每穗粒数 Spikelets per panicle
总颖花数 Spikelets m-2 (×103)
结实率 Seed setting rate (%)
千粒重 1000-Grain weight (g)
产量 Grain yield(t hm-2)
湖南长沙 Changsha, Hunan
N1D1
303.3
166.3
50.53
87.97
22.79
10.20
328.2
137.3
45.08
68.98
23.43
8.25
N1D2
266.6
197.7
52.77
84.91
23.06
10.37
283.5
146.4
41.52
71.39
23.21
8.01
N1D3
241.3
165.3
40.03
90.10
24.37
9.35
255.4
161.8
41.32
68.12
23.50
7.50
N1D4
221.8
169.7
37.73
90.42
24.25
8.92
250.3
164.8
41.24
67.29
22.91
7.44
N2D1
344.1
158.3
54.47
88.15
23.13
10.74
339.6
121.9
41.43
74.79
23.79
8.43
N2D2
288.0
186.3
53.77
89.78
23.55
10.59
288.9
139.5
40.30
76.37
24.08
8.61
N2D3
265.0
182.3
48.47
86.21
24.33
10.34
275.5
153.4
42.27
71.95
23.62
8.32
N2D4
233.5
199.0
46.60
85.04
24.51
9.72
263.1
160.7
42.25
72.91
23.23
8.16
N3D1
369.0
151.3
55.90
87.22
23.04
10.55
335.0
118.3
39.60
80.64
23.68
8.14
N3D2
299.6
181.7
54.43
89.53
23.55
11.12
276.0
162.8
44.91
72.42
23.90
8.45
N3D3
278.0
177.0
49.30
86.64
24.12
10.24
281.2
158.6
44.60
73.36
24.04
8.62
N3D4
270.6
193.3
52.30
82.05
24.27
10.51
272.4
180.8
49.26
68.76
23.58
8.55
LSD0.05
31.7
11.5
7.51
4.80
0.28
1.08
12.7
11.8
3.92
5.32
0.40
0.41
海南澄迈 Chengmai, Hainan
N1D1
322.6
117.3
37.83
80.44
25.55
8.15
319.2
110.3
35.18
81.14
25.45
8.37
N1D2
265.0
120.8
32.00
82.75
25.45
8.21
292.5
122.4
35.78
77.87
25.48
8.26
N1D3
236.5
141.6
33.47
84.54
25.12
8.04
257.9
135.3
34.86
73.79
25.18
7.72
N1D4
220.4
156.7
34.53
82.23
24.92
7.40
216.0
156.7
33.82
69.82
25.30
6.97
N2D1
393.3
105.9
41.67
72.04
25.36
8.97
371.2
107.3
39.81
74.33
24.94
8.29
N2D2
298.4
133.7
39.90
77.68
25.25
8.90
319.2
129.6
41.37
66.69
24.89
7.86
N2D3
288.7
129.1
37.23
80.26
25.12
8.71
286.5
147.8
42.32
64.07
25.10
7.71
N2D4
252.8
169.4
42.80
75.18
25.09
8.58
265.4
161.0
42.68
64.07
25.19
7.79
N3D1
448.5
121.5
54.50
71.21
25.43
9.39
369.8
106.0
39.19
77.13
25.01
8.19
N3D2
332.7
127.0
42.20
71.14
25.45
8.93
338.8
120.5
40.80
70.80
25.01
7.98
N3D3
295.1
134.2
39.60
83.34
25.33
8.62
293.2
135.9
39.85
68.71
25.24
7.67
N3D4
261.4
150.7
39.43
77.61
25.27
8.64
269.9
132.3
35.68
75.26
24.66
7.33
LSD0.05
19.9
6.9
3.15
5.17
0.29
0.45
19.8
8.0
2.25
4.03
0.35
0.60
$N_1$、$N_2$ and $N_3$ are 75, 150 and 225 $kg N hm^2$, respectively. $D_1$、$D_2$、$D_3$ and $D_4$ are 68, 40, 27, and 19 hills $m^{-2}$, respectively.$N_1$、$N_2$、$N_3$分别为75、150、225 $kg N hm^2$,$D_1$、$D_2$、$D_3$、$D_4$分别为68、40、27、19穴 $m^{-2}$。
表2 施氮量与栽插密度对产量及其构成的影响 Table 2 Effect of N application rates and transplanting densities on grain yield and yield components
表3 Table 3 表3(Table 3)
表3 每穴苗数与栽插密度对产量及其构成的影响 Table 3 Effect of seedlings per hill and transplanting densities on grain yield and yield components
处理 Treatment
基本苗数 Seedlings m-2
2012
2013
有效穗数 Panicles m-2
每穗粒数 Spikelets panicle-1
总颖花数 Spikelets m-2 ($times$103)
结实率 Seed setting rate (%)
千粒重 1000-grain weight (g)
产量 Grain yield (t hm-2)
有效穗数 Panicles m-2
每穗粒数 Spikelets panicle-1
总颖花数 Spikelets m-2($times$103)
结实率 Seed setting rate (%)
千粒重 1000-grain weight (g)
产量 Grain yield (t hm-2)
湖南长沙 Changsha, Hunan
S1M1
40
276.8
184.3
50.97
90.63
24.38
10.50
323.2
151.6
49.02
67.25
23.26
8.77
S1M2
27
258.6
196.7
50.86
87.94
23.50
10.68
307.2
184.9
54.37
61.77
23.27
8.26
S1M3
19
229.0
210.3
48.34
87.82
23.53
10.34
293.5
211.1
55.16
60.14
23.06
8.36
S1M4
14
230.4
200.3
46.24
84.98
23.69
10.38
292.4
213.0
51.87
61.16
22.91
8.09
S2M1
80
287.1
166.7
47.86
89.88
24.27
10.25
291.1
138.9
40.63
74.42
23.84
8.17
S2M2
54
276.3
170.3
47.01
89.06
24.13
10.03
275.1
169.9
45.92
65.11
23.87
8.04
S2M3
38
252.3
179.3
45.20
90.51
24.10
9.85
269.9
167.3
43.99
67.47
23.29
8.03
S2M4
28
231.4
200.3
46.29
87.79
23.50
9.99
262.8
166.4
40.12
70.10
23.53
7.55
S3M1
120
301.8
173.7
52.37
88.66
24.39
9.79
260.8
142.0
43.59
72.59
23.57
8.51
S3M2
81
294.3
179.7
52.79
90.15
24.08
10.08
255.1
165.8
48.29
66.92
23.10
8.14
S3M3
57
251.6
185.7
46.69
86.69
23.32
9.80
243.2
167.7
46.13
67.95
23.69
8.42
S3M4
42
249.1
175.0
43.62
89.82
23.22
9.63
241.8
181.5
46.30
64.69
23.08
7.69
LSD0.05
19.0
10.5
4.42
3.51
0.26
0.58
23.0
13.7
6.49
4.00
0.27
0.53
海南澄迈 Chengmai, Hainan
S1M1
40
260.0
156.8
40.74
77.02
24.91
8.55
262.1
138.9
36.38
69.65
25.25
7.57
S1M2
27
243.8
164.5
40.10
79.82
25.35
8.21
238.5
156.1
37.22
70.45
24.88
7.34
S1M3
19
232.9
176.0
41.01
66.69
25.55
7.97
229.5
165.4
37.95
65.98
24.74
6.82
S1M4
14
191.0
189.6
36.19
72.80
25.41
7.87
199.4
165.4
32.97
71.55
25.25
6.62
S2M1
80
300.1
138.4
41.59
77.16
25.09
8.82
310.7
121.3
37.68
77.18
24.96
8.03
S2M2
54
251.0
161.1
40.51
70.99
25.33
8.47
274.5
139.0
38.15
69.13
25.05
7.66
S2M3
38
247.2
162.5
40.20
75.35
25.04
8.82
260.1
143.6
37.37
72.04
25.10
7.56
S2M4
28
228.3
155.7
35.57
74.01
25.12
8.52
231.7
160.9
37.33
69.57
25.13
7.02
S3M1
120
330.2
135.1
44.61
70.30
25.15
9.00
317.9
117.8
37.45
75.99
25.02
8.21
S3M2
81
297.5
140.7
41.87
73.53
25.11
8.72
276.9
131.7
36.44
78.88
25.44
8.08
S3M3
57
250.0
165.4
41.34
72.47
25.16
8.45
251.8
143.5
36.14
78.60
25.25
7.75
S3M4
42
239.4
164.2
39.31
73.20
25.08
8.39
237.3
156.6
37.16
70.71
25.35
7.22
LSD0.05
14.6
10.5
4.10
4.70
0.38
0.56
12.9
11.7
3.16
5.90
0.34
0.53
$S_1$, $S_2$, and $S_3$ are 1, 2, and 3 seedling(s) per hill, respectively. $M_1$, $M_2$, $M_3$, and $M_4$ are 40, 27, 19, and 14 hills $m^{-2}$, respectively.$S_1$、$S_2$、$S_3$分别为每穴单本、双本、三本,$M_1$、 $M_2$、$M_3$、$M_4$分别为40、27、19、14穴$m^{-2}$。
表3 每穴苗数与栽插密度对产量及其构成的影响 Table 3 Effect of seedlings per hill and transplanting densities on grain yield and yield components
图1 施氮量和每穴苗数与栽插密度对水稻分蘖动态的影响N1、N2、N3分别为75、150、225 kg N hm-2, D1、D2、D3、D4分别为68、40、27、19穴 m-2; S1、S2、S3分别为每穴单本、双本、三本, M1、M2、M3、M4分别为40、27、19、14穴 m-2。A(C)、B(D)分别代表长沙和澄迈的分蘖动态。Fig. 1 Effect of N application rates, seedlings per hill and transplanting density on tillering dynamic in riceN1, N2, and N3 are 75, 150, and 225 kg N hm-2, respectively. D1, D2, D3, and D4 are 68, 40, 27, and 19 hills m-2, respectively. S1, S2, and S3 are 1, 2, and 3 seedling(s) per hill, respectively. M1, M2, M3, and M4 are 40, 27, 19, and 14 hills m-2, respectively. A(C) and B(D) are tillering dynamic of Changsha and Chengmai, respectively.
表4 施氮量与栽插密度对干物质积累和氮肥利用率的影响(2012) Table 4 Effect of N application rates and transplanting densities on dry matter accumulation, PEP and IE in 2012
处理 Treatment
齐穗期 Heading (g m-2)
成熟期 Maturity (g m-2)
表观转化率 ATR (%)
花后干物质 生产比例 PPR (%)
收获指数Harvest index
氮肥偏因素 生产力 PEP (kg kg-1)
氮素籽粒 生产效率 IE (kg kg-1)
湖南长沙 Changsha, Hunan
N1D1
1352.9
1953.1
25.3
30.7
0.52
136.0
56.1
N1D2
1227.6
1923.1
18.8
35.9
0.53
138.3
59.7
N1D3
1104.7
1743.7
11.1
36.5
0.51
124.7
61.7
N1D4
1062.5
1585.6
20.1
32.9
0.54
118.9
59.8
N2D1
1595.1
2286.5
26.0
30.4
0.51
71.6
46.2
N2D2
1385.4
2115.3
20.8
33.7
0.53
70.6
50.4
N2D3
1354.6
2020.2
23.0
31.9
0.53
68.9
52.9
N2D4
1243.9
1812.2
26.9
30.7
0.53
64.8
53.2
N3D1
1514.2
2587.6
4.3
41.2
0.49
46.9
35.3
N3D2
1329.2
2213.6
12.0
39.7
0.52
49.4
47.4
N3D3
1236.7
2232.0
5.8
43.5
0.52
45.5
47.5
N3D4
1431.0
2096.6
26.4
31.9
0.54
46.7
45.8
LSD0.05
268.3
386.3
24.6
15.5
0.03
8.2
9.3
海南澄迈 Chengmai, Hainan
N1D1
1018.7
1398.8
36.3
26.8
0.55
108.7
73.6
N1D2
922.1
1208.4
41.4
23.6
0.54
109.5
84.0
N1D3
808.1
1294.0
20.8
37.1
0.56
107.2
77.6
N1D4
803.5
1159.5
32.0
30.0
0.56
98.7
79.9
N2D1
1086.2
1441.9
41.3
24.2
0.51
59.8
71.4
N2D2
1106.9
1377.8
48.0
19.4
0.53
59.4
69.4
N2D3
1012.3
1466.1
30.2
30.8
0.53
58.0
63.2
N2D4
943.9
1576.1
17.1
40.0
0.54
57.2
57.1
N3D1
1096.8
1747.8
21.5
37.3
0.52
41.7
54.9
N3D2
954.7
1441.4
22.4
33.3
0.48
39.7
62.0
N3D3
1022.9
1566.6
24.1
34.6
0.55
38.3
57.0
N3D4
1015.8
1451.3
26.8
29.6
0.50
38.4
65.9
LSD0.05
91.5
193.8
19.7
11.6
0.03
4.0
8.3
N1, N2, and N3 are 75, 150, and 225 kg N hm-2, respectively. D1, D2, D3, and D4 are 68, 40, 27, and 19 hills m-2, respectively. ATR, PPR, PEP, and IE are abbreviations of apparent transformation rate, post-anthesis dry matter production rate, partial factor productivity of applied nitrogen, and internal utilization efficiency of nitrogen, respectively. N1、N2、N3分别为75、150、225 kg N hm-2, D1、D2、D3、D4分别为68、40、27、19穴 m-2。ATR、PPR、PEP和IE分别为表观转化率、花后干物质生产比例、氮肥偏生产力和氮素籽粒生产效率。
表4 施氮量与栽插密度对干物质积累和氮肥利用率的影响(2012) Table 4 Effect of N application rates and transplanting densities on dry matter accumulation, PEP and IE in 2012
表5 Table 5 表5(Table 5)
表5 施氮量与栽插密度对干物质积累和氮肥利用率的影响(2013) Table 5 Effect of N application rates and transplanting densities on dry matter accumulation, PEP and IE in 2013
处理 Treatment
齐穗期 Heading (g m-2)
成熟期 Maturity (g m-2)
表观转化率 ATR (%)
花后干物质 生产比例 PPR (%)
收获指数Harvest index
氮肥偏因素 生产力 PEP (kg kg-1)
氮素籽粒 生产效率 IE (kg kg-1)
湖南长沙 Changsha, Hunan
N1D1
— #
1613.4
—
—
0.45
110.0
82.4
N1D2
—
1475.0
—
—
0.44
106.8
82.2
N1D3
—
1462.3
—
—
0.46
99.9
88.4
N1D4
—
1345.4
—
—
0.45
99.1
91.4
N2D1
—
1800.7
—
—
0.47
56.2
67.6
N2D2
—
1676.6
—
—
0.45
57.4
73.2
N2D3
—
1745.9
—
—
0.48
55.4
78.2
N2D4
—
1574.0
—
—
0.47
54.4
76.7
N3D1
—
1696.2
—
—
0.46
36.2
66.1
N3D2
—
1791.8
—
—
0.45
37.6
60.6
N3D3
—
1884.8
—
—
0.45
38.3
60.0
N3D4
—
1717.2
—
—
0.48
38.0
67.3
LSD0.05
183.0
0.02
3.7
17.8
海南澄迈 Chengmai, Hainan
N1D1
870.1
1426.5
18.4
38.6
0.54
111.6
64.2
N1D2
919.0
1332.9
31.3
31.2
0.53
110.2
90.2
N1D3
840.5
1196.6
33.1
29.0
0.51
103.0
98.7
N1D4
780.0
1160.7
30.3
31.8
0.51
93.0
93.3
N2D1
1010.3
1481.3
26.8
31.0
0.49
55.3
73.1
N2D2
1049.9
1389.9
39.8
24.6
0.49
52.4
66.5
N2D3
981.3
1410.8
31.5
30.2
0.48
51.4
64.8
N2D4
934.8
1341.1
32.1
29.9
0.48
51.9
81.7
N3D1
1289.3
1496.5
56.0
13.1
0.49
36.4
67.9
N3D2
1043.1
1531.2
27.1
31.8
0.48
35.5
58.4
N3D3
897.1
1408.1
20.5
36.3
0.48
34.1
62.6
N3D4
948.2
1416.5
26.6
32.6
0.51
32.6
62.6
LSD0.05
184.2
214.3
31.0
17.0
0.02
4.9
13.5
N1, N2, and N3 are 75, 150, and 225 kg N hm-2, respectively. D1, D2, D3, and D4 are 68, 40, 27, and 19 hills m-2, respectively. ATR, PPR, PEP, and IE are abbreviations of apparent transformation rate, post-anthesis dry matter production rate, partial factor productivity of applied nitrogen, and internal utilization efficiency of nitrogen, respectively. # Not sampling at heading in 2013 in Changsha. N1、N2、N3分别为75、150、225 kg N hm-2, D1、D2、D3、D4分别为68、40、27、19穴 m-2。ATR、PPR、PEP和IE分别为表观转化率、花后干物质生产比例、氮肥偏生产力和氮素籽粒生产效率。#2013年长沙齐穗期数据不完整。
表5 施氮量与栽插密度对干物质积累和氮肥利用率的影响(2013) Table 5 Effect of N application rates and transplanting densities on dry matter accumulation, PEP and IE in 2013
表6 每穴苗数与栽插密度对干物质积累和收获指数的影响 Table 6 Effect of seedlings per hill and transplanting densities on dry matter accumulation and harvest index
地点 Site
处理 Treatment
基本苗数 Seedlings m-2
齐穗期 Heading (g m-2)
成熟期 Maturity (g m-2)
表观转化率 ATR (%)
花后干物质生产比例 PPR (%)
收获指数 Harvest index
2012
湖南长沙 Changsha, Hunan
S1M2
27
1278.1
2045.4
17.2
37.6
0.54
S2M4
28
1140.7
1922.3
11.7
40.6
0.54
S1M1
40
1287.7
2346.1
5.6
45.0
0.55
S3M4
42
1152.5
1921.3
10.7
40.0
0.54
S2M2
54
1238.7
2211.1
4.7
43.9
0.54
S3M3
57
1177.1
1866.5
17.5
36.8
0.54
S2M1
80
1345.6
2235.8
10.1
39.7
0.53
S3M2
81
1212.1
2273.5
2.5
46.7
0.55
LSD0.05
244.5
249.2
17.0
10.7
0.03
海南澄迈 Chengmai, Hainan
S1M2
27
986.3
1368.0
34.2
27.9
0.53
S2M4
28
823.7
1321.5
16.6
37.5
0.51
S1M1
40
998.6
1533.5
23.2
34.9
0.52
S3M4
42
903.6
1422.0
17.1
36.4
0.51
S2M2
54
1054.3
1322.4
48.0
20.2
0.51
S3M3
57
910.5
1356.7
27.0
32.7
0.52
S2M1
80
1088.4
1474.0
36.1
26.0
0.53
S3M2
81
958.0
1472.7
24.6
34.9
0.52
LSD0.05
102.8
174.0
14.8
9.2
0.02
2013
湖南长沙 Changsha, Hunan
S1M2
27
— #
1758.6
—
—
0.45
S2M4
28
—
1413.1
—
—
0.47
S1M1
40
—
1750.3
—
—
0.44
S3M4
42
—
1525.1
—
—
0.45
S2M2
54
—
1724.8
—
—
0.44
S3M3
57
—
1705.1
—
—
0.44
S2M1
80
—
1646.9
—
—
0.44
S3M2
81
—
1749.8
—
—
0.46
LSD0.05
241.1
0.02
海南澄迈 Chengmai, Hainan
S1M2
27
775.3
1260.1
19.3
38.5
0.52
S2M4
28
746.9
1201.5
21.2
37.6
0.51
S1M1
40
858.2
1269.6
24.7
32.4
0.50
S3M4
42
781.5
1198.0
24.9
34.7
0.52
S2M2
54
897.4
1255.0
35.9
28.5
0.51
S3M3
57
899.1
1357.0
28.7
33.4
0.54
S2M1
80
1071.7
1337.6
48.6
18.7
0.52
S3M2
81
951.4
1472.8
23.2
34.9
0.52
LSD0.05
142.2
147.2
23.4
14.1
0.03
S1, S2, and S3 are 1, 2, and 3 seedling(s) per hill, respectively. M1, M2, M3, and M4 are 40, 27, 19, and 14 hills m-2, respectively. ATR and PPR are abbreviations of apparent transformation rate and post-anthesis dry matter production rate, respectively. # Not sampling at heading in 2013 in Changsha. S1、S2、S3分别为每穴单本、双本、三本, M1、M2、M3、M4分别为40、27、19、14穴 m-2。ATR和PPR分别为表观转化率和花后干物质生产比例。#2013年长沙齐穗期数据不完整。
表6 每穴苗数与栽插密度对干物质积累和收获指数的影响 Table 6 Effect of seedlings per hill and transplanting densities on dry matter accumulation and harvest index
3 讨论“ 密” , 即合理密植, 是我国农业的“ 八字宪法” 之一。20世纪50年代末至70年代中, 随着第一次水稻绿色革命的矮秆化和早熟化, 我国水稻高产栽培强调增加栽插密度; 20世纪70年代中至90年代末, 随着化肥施用量的增加和分蘖能力强的杂交水稻的推广应用, 移栽密度大幅度降低; 20世纪90年代中期以来, 超级稻的选育获得重大进展, 其产量潜力主要表现为大穗, 在生产上通常培育带蘖壮秧或小苗稀植移栽[2, 5, 6]。然而, 超级稻在稀植条件下要获得稳定穗数的同时培育大穗并保持后期功能叶片不早衰, 必然要确保氮素的供给才能达到高产或超高产。目前, 为了充分发挥超级稻的增产潜力, 氮肥施用量过大, 导致氮肥利用率低[14, 16, 17]和氮肥盈余[18]。已有研究表明通过适当增加栽插密度及减少氮肥用量, 既可以实现水稻高产又能提高氮素利用率[19, 20, 21, 22, 23]。从本研究结果来看, 密植处理D1与D2之间, 或常规密度D3与D4之间的产量差异不显著, 但密植处理的产量显著高于常规密度, 增幅为4.5%~12.5%。低氮(N1)密植处理与中氮(N2)或高氮(N3)常规密度比较, 产量或高或低, 存在年度间和地点间差异。其中, 2012年澄迈、2013年长沙点低氮密植处理的平均产量略低于中、高氮常规密度, 但2012年长沙点介于中氮和高氮之间, 2013年澄迈点则比中氮和高氮高; 而两年两点中氮密植处理的平均产量均高于高氮常规密度。低氮密植处理的氮肥偏生产力分别比中氮和高氮常规密度高89.4%~114.6%和184.0%~232.6%, 氮素籽粒生产效率分别高5.4%~30.9%和23.3%~29.2%; 中氮密植处理的氮肥偏生产力比高氮水平常规密度高48.8%~61.4%, 氮素籽粒生产效率高3.6%~14.6%。这与前人的研究结果基本一致。但是, 大幅增加栽插密度也会带来如下问题。 (1) 超级稻一般分蘖能力较强[6], 栽插密度过大会缩短有效分蘖期, 增加无效分蘖数, 降低分蘖成穗率, 影响个体和群体的健壮[24, 25]。本研究表明, 密植处理与常规密度相比, 有效分蘖期缩短6 d左右, 但分蘖成穗率平均提高10.9%。密植处理D1在所有处理中有效穗数最多, 每穗粒数最少, 总颖花量最多或较多, 虽然最终产量显著高于常规密度, 但与密植处理D2差异不显著, 甚至略低于D2(长沙), 可能是由于D1的密度过高, 影响了个体和群体的健壮。 (2) 依据刘学军等[26]的研究结果, 我国南方稻田每年干湿沉降和灌溉水中输入的氮素总量约为70 kg hm-2, 按氮素表观吸收利用率为50%计算, 2012年长沙点N1D1、N1D2的土壤供氮达69.2 kg hm-2和61.3 kg hm-2, 而2013年则余留至土壤的氮素达12.4 kg hm-2和15.0 kg hm-2; 海南点除2013年N1D1需要土壤供氮17.9 kg hm-2外, 其余低氮密植处理均余留至土壤1.7~20.9 kg hm-2氮素。可见, 长期低氮(75 kg hm-2)密植(68穴 m-2)栽培可能对土壤肥力产生不利影响, 建议生产上增施有机肥培肥地力。 (3) 由于本研究是小区试验且采用手工栽插, 用工成本较高, 随着水稻机械化插秧和轻简栽培的大面积推广, 用工成本会大大降低。低氮密植可以节省氮肥, 但同时增加密度也会增加用种量, 伴随病虫害的加重, 因此, 低氮密植栽培的综合经济效益和病虫危害的程度有待深入研究。 综上所述, 超级稻的施氮量100~150 kg N hm-2和栽插密度40穴 m-2左右, 不仅有利于稻田的可持续生产, 还能获得高产并显著提高氮肥利用率。 The authors have declared that no competing interests exist.
章秀福, 王丹英, 方福平, 曾衍坤, 廖西元. 中国粮食安全和水稻生产. 农业现代化研究, 2005, 26(2): 85-88Zhang XF, Wang DY, Fang FP, Zeng YK, Liao XY. Food safety and rice production in China. Res Agric Modern, 2005, 26(2): 85-88 (in Chinese with English abstract)[本文引用:1]
[2]
邹应斌. 长江流域双季稻栽培技术发展. 中国农业科学, 2011, 44: 254-262Zou YB. Development of cultivation technology for double cropping rice along the Changjiang River Valley. Sci Agric Sin, 2011, 44: 254-262 (in Chinese with English abstract)[本文引用:2]
[3]
袁隆平. 选育超高产杂交水稻的进一步设想. 杂交水稻, 2012, 27(6): 1-2Yuan LP. Conceiving of breeding further super-high-yield hybrid rice. Hybrid Rice, 2012, 27(6): 1-2 (in Chinese with English abstract)[本文引用:1]
[4]
李建武, 张玉烛, 吴俊, 舒友林, 周萍, 邓启云. 超高产水稻新组合Y两优900百亩方15. 40 t/hm2高产栽培技术研究. , 2014, 26(6): 1-4Li JW, Zhang YZ, WuJ, Shu YL, ZhouP, Deng QY. High-yielding cultural techniques of super hybrid rice YLY900 yielded 15. 40 t/hm2 on a 6. 84 hm2 scale. , 2014, 26(6): 1-4 (in Chinese with English abstract)[本文引用:1]
[5]
马均, 陶诗顺. 杂交中稻超多蘖壮秧超稀高产栽培技术的研究. 中国农业科学, 2002, 35: 42-48MaJ, Tao SS. Study on the practice and high-yielding mechanism of super-sparse-cultivation associated with maximum-tiller seedling of hybrid rice. Sci Agric Sin, 2002, 35: 42-48 (in Chinese with English abstract)[本文引用:2]
[6]
邹应斌, 周上游, 唐起源. 中国超级杂交水稻超高产栽培研究的现状与展望. 中国农业科技导报, 2003, 5(1): 31-35Zou YB, Zhou SY, Tang QY. Status and outlook of high yielding cultivation researches on China super hybrid rice. Rev China Agric Sci & Technol, 2003, 5(1): 31-35 (in Chinese with English abstract)[本文引用:4]
[7]
朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点. 南京农业大学学报, 2000, 23(4): 5-8Zhu DF, Lin XQ, Cao WX. Characteristics of root distribution of super high-yielding rice varieties. J Nanjing Agric Univ, 2000, 23(4): 5-8 (in Chinese with English abstract)[本文引用:1]
[8]
袁小乐, 潘晓华, 石庆华, 吴建富, 漆映雪. 超级早、晚稻的养分吸收和根系分布特性研究. 植物营养与肥料学报, 2010, 16: 27-32Yuan XL, Pan XH, Shi QH, Wu JF, Qi YX. Characteristics of nutrient uptake and root system distribution in super early and super late rice. Plant Nutr Fert Sci, 2010, 16: 27-32 (in Chinese with English abstract)[本文引用:2]
[9]
杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001, 15(4): 26-31Yang HJ, Li YZ, Yang RC, Jiang ZW, Zheng JS. Dry matter production characteristics of super high yielding rice. Chin J Rice Sci, 2001, 15(4): 26-31 (in Chinese with English abstract)[本文引用:1]
[10]
吴文革, 张洪程, 陈烨, 李杰, 钱银飞, 吴桂成, 翟超群. 超级中籼杂交水稻氮素积累利用特性与物质生产. 作物学报, 2008, 34: 1060-1068Wu WG, Zhang HC, ChenY, LiJ, Qian YF, Wu GC, Zhai CQ. Dry-matter accumulation and nitrogen absorption and utilization in middle-season indica super hybrid rice. Acta Agron Sin, 2008, 34: 1060-1068 (in Chinese with English abstract)[本文引用:2]
[11]
纪洪亭, 冯跃华, 何腾兵, 李云, 武彪, 王小艳. 两个超级杂交水稻品种物质生产的特性. 作物学报, 2013, 39: 2238-2246Ji HT, Feng YH, He TB, LiY, WuB, Wang XY. Dynamic characteristics of matter population in two super hybrid rice cultivars. Acta Agron Sin, 2013, 39: 2238-2246 (in Chinese with English abstract)[本文引用:1]
[12]
HuangM, Yang CL, Ji QM, Jiang LG, Tan JL, Li YQ. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Res, 2013, 149: 187-192[本文引用:1]
[13]
朱德峰, 林贤青, 陈苇, 孙永飞, 卢婉芳, 段彬伍, 张玉屏. 超级稻协优9308营养特性与施肥技术. 中国稻米, 2002, (2): 18-19Zhu DF, Lin XQ, ChenW, Sun YF, Lu WF, Duan BW, Zhang YP. The nutritional characteristics and technique of fertilization in super rice Xieyou 9308. China Rice, 2002, (2): 18-19 (in Chinese with English abstract)[本文引用:1]
[14]
Huang JL, HeF, Cui KH, Buresh Roland J, XuB, Gong WH, Peng SB. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008, 105: 70-80[本文引用:3]
[15]
Zhang YB, Tang QY, Zou YB, Li DQ, Qin JQ, Yang SH, Chen LJ, XiaB, Peng SB. Yield potential and radiation use efficiency of ‘super’ hybrid rice grown under subtropical condition. Field Crops Res, 2009, 114: 91-98[本文引用:1]
[16]
彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, BureshR, WittC. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103Peng SB, Huang JL, Zhong XH, Yang JC, Wang GH, Zou YB, Zhang FS, Zhu QS, BureshR, WittC. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095-1103 (in Chinese with English abstract)[本文引用:2]
[17]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924Zhang FS, Wang JQ, Zhang WF, Cui ZL, Ma WQ, Chen XP, Jiang RF. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924 (in Chinese with English abstract)[本文引用:2]
[18]
张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 15: 3161-3171Zhang WF, MaL, Huang GQ, WuL, Chen XP, Zhang FS. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013, 15: 3161-3171 (in Chinese with English abstract)[本文引用:2]
[19]
马国辉, 龙继锐, 戴清明, 周静. 超级杂交中稻Y两优1号最佳缓释氮肥用量与密度配置研究. 杂交水稻, 2008, 23(6): 73-77Ma GH, Long JR, Dai QM, ZhouJ. Studies on the optimized allocation of controlled-release nitrogen fertilizer application and planting density for medium super hybrid rice combination Yliangyou 1. Hybrid Rice, 2008, 23(6): 73-77 (in Chinese with English abstract)[本文引用:2]
[20]
周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16(2): 274-281Zhou JM, ZhaoL, Dong YY, XuJ, Bian WY, Mao YC, Zhang XF. Nitrogen and transplanting density interactions on the rice yield and N use rate. Plant Nutr Fert Sci, 2010, 16(2): 274-281 (in Chinese with English abstract)[本文引用:2]
[21]
樊红柱, 曾祥忠, 张冀, 吕世华. 移栽密度与供氮水平对水稻产量、氮素利用影响. 西南农业学报, 2010, 23: 1137-1141Fan HZ, Zeng XZ, ZhangJ, Lü SH. Effects of transplanting density and nitrogen management on rice grain and nitrogen utilization efficiency. Southwest China J Agric Sci, 2010, 23: 1137-1141 (in Chinese with English abstract)[本文引用:2]
[22]
陈海飞, 冯洋, 蔡红梅, 徐芳森, 周卫, 刘芳, 庞再明, 李登荣. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20: 1319-1328Chen HF, FengY, Cai HM, Xu FS, ZhouW, LiuF, Pang ZM, Li DR. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields. Plant Nutr Fert Sci, 2014, 20: 1319-1328 (in Chinese with English abstract)[本文引用:2]
[23]
陆秀明, 黄庆, 刘怀珍, 张彬, 李惠芬, 邹积祥. 机插超级稻在不同施肥水平和不同插植密度下的生育特性及产量表现. 中国农学通报, 2014, 30(21): 152-157Lu XM, HuangQ, Liu HZ, ZhangB, Li HF, Zou JX. The performance of yield and growth characteristics in different fertilizer levels and different transplanting densities of super mechanical transplanting rice. Chin Agric Sci Bull, 2014, 30(21): 152-157 (in Chinese with English abstract)[本文引用:2]
[24]
苏祖芳, 霍中洋. 水稻合理密植研究进展. 耕作与栽培, 2006, (5): 6-9Su FZ, Huo ZY. Progress for research in rational close planting in rice. Gengzuo yu Zaipei, 2006, (5): 6-9 (in Chinese with English abstract)[本文引用:1]
[25]
李木英, 石庆华, 王涛, 方慧铃, 潘晓华, 谭雪明. 种植密度对双季超级稻群体发育和产量的影响. 杂交水稻, 2009, 24(2): 72-77Li MY, Shi QH, WangT, Fang HL, Pan XH, Tan XM. Effects of different transplanting densities on the population development and grain yield of double cropping super rice. Hybrid Rice, 2009, 24(2): 72-77 (in Chinese with English abstract)[本文引用:1]
[26]
刘学军, 张福锁. 环境养分及其在生态系统养分资源管理中的作用——以大气氮沉降为例. , 2009, 26: 306-311Liu XJ, Zhang FS. Nutrient from environment and its effect in nutrient resources management of ecosystems—A case study on atmospheric nitrogen deposition. , 2009, 26: 306-311 (in Chinese with English abstract)[本文引用:1]