关键词:粒用高粱; 氮磷钾养分; 养分吸收; 籽粒产量; 籽粒品质 Response of Nutrient Uptake, Yield and Quality of Grain Sorghum to Nutrition of Nitrogen, Phosphorus and Potassium WANG Jin-Song1, JIAO Xiao-Yan1,*, DING Yu-Chuan1, DONG Er-Wei1, BAI Wen-Bin2, WANG Li-Ge1, WU Ai-Lian1 1 Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences / Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Taiyuan 030031, China
2 Institute of Sorghum, Shanxi Academy of Agricultural Sciences, Yuci 030600, China
AbstractThe field experiment conducted with the fixed plots tested in Dongyang Agricultural Experiment Station of Shanxi Academy of Agricultural Sciences in 2011 and 2012 was carried out to investigate the effects of nitrogen, phosphorus, potassium on nutrient uptake, yield and quality of grain sorghum [ Sorghum bicolor (L.) Moench] cv. Jinza 23 under the sorghum-maize rotation cropping system in 2013. The experiment included five treatments with fertilizers NPK, PK, NK, NP, and CK (without fertilization) with three replicates in a completely randomized block design. The experimental results showed that at 76 days after emergence, the sorghum maximum leaf area of NPK, PK, NP, and NK treatments increased by 18.7%, 4.1%, 17.9%, and 16.6%, respectively; and the total functional leaf area per plant increased by 54.1%, 18.4%, 47.4%, and 48.2% respectively compared with CK treatment. Fertilization treatment had significant influence on leaf biomass throughout growth period. Since 121 days after emergence, there were significant effects of different fertilization treatments on the stem biomass. Comparison with CK treatment, the sorghum grain yield of NPK, PK, NK, and NP treatments increased by 93.8%, 35.5%, 91.2%, and 78.1%, respectively. The N contents of leaves in CK and PK treatments were significantly lower than those of NPK, NK, and NP treatments at 100 days after emergence. The P contents in leaves of CK and NK treatments decreased significantly as well. At 149 days after emergence, CK significantly reduced the N content in grains. The treatments of CK, PK, and NP increased the amylose contents in grains, while decreased the amylopectin content, resulting in an increased amylose/amylopectin ratio accordingly. The protein content in applying N fertilizer treatments of NPK, NP and NK was significantly higher than those of CK and PK. The grain protein content in NPK treatment was 73.9% and 40.3%, more than those in CK and PK treatments respectively. The grain tannin content of NPK treatment was the highest among treatments. The tannin content of NPK treatment increased by 15.6% and 22.7% respectively, compared with those of CK and PK treatments. These results demonstrated that no N application or no fertilization significantly reduces the growth, dry matte accumulation, grain yield, N and P uptake, and the concentrations of amylase, protein and tannin in grains of grain sorghum. The effect of no N application or no fertilization on sorghum is significantly greater than those of no P or K application. Balanced fertilization with N, P and K is beneficial to increase grain yield and improve grain quality of grain sorghum.
Keyword:Grain sorghum; N,P,K nutrition; Nutrient uptake; Grain yield; Grain quality Show Figures Show Figures
高粱[Sorghum bicolor (L.) Moench]是仅次于小麦、水稻、玉米和大麦的世界第五大作物[1], 具有较高的利用价值, 广泛应用于酿造业[2]、饲料加工业和生物质能源[3]等领域。与其他作物比较高粱具有较强的耐热性、耐旱性[4, 5]、耐涝性、耐瘠薄和耐盐碱等特点[6], 在不良生态环境条件下具有较高的产量[7]。在全世界范围内高粱通常种植在土壤侵蚀严重、肥力较低和干旱缺水条件下[8, 9], 在我国高粱已被作为先锋作物在土壤瘠薄、年降雨小于450 mm的干旱缺水的边际土壤上种植[2, 5]。我国是世界上高粱生产大国之一, 近年来高粱种植面积稳定在73.3万公顷左右, 年生产高粱270万吨左右。随着我国酿造业和饲料加工业的快速发展, 对高粱需求急剧增加, 为了满足国内高粱需求2013年进口高粱250万吨。已有研究表明, 粒用高粱氮、磷养分吸收高峰在抽穗至灌浆期, 而钾的吸收一直延续到成熟期[10], 因此氮、磷、钾养分的吸收利用直接影响作物生长发育。土壤中的氮、磷、钾养分对玉米当季贡献率较高[11], 缺氮高粱叶片呈淡黄色, 光合作用受到抑制, 光合速率下降, 缺磷会影响高粱生长、根系形态和体内酶含量[12], 这足以说明土壤养分状况对作物生长有着举足轻重的作用。迄今为止, 有关土壤氮、磷、钾养分耗竭对高粱生长、不同部位养分浓度及品质的影响还未见报道。为了明确土壤氮、磷、钾养分消耗对高粱综合农艺性状、各器官养分含量的影响, 本试验利用连续3年养分消耗后形成的土壤研究了施用氮、磷、钾对粒用高粱养分吸收、产量及品质的影响, 旨在理论上明确养分限制条件下高粱养分吸收状况和土壤减氮、减磷、减钾对高粱生长的影响程度, 为瘠薄地高粱栽培技术提供理论依据。 1 材料与方法1.1 供试材料试验在山西省晋中市榆次区山西省农业科学院农业试验基地进行。试验土壤类型为潮土, 土壤质地为黏壤质, 2011年土壤耕层基础养分含量为有机质10.64 g kg-1, 全氮0.69 g kg-1, 有效磷(Olsen-P) 9.48 mg kg-1, 速效K 140.0 mg kg-1。2011— 2013年进行定位试验, 共设5个处理, 即NPK (N 225 kg hm-2、P2O5 60 kg hm-2、K2O 60 kg hm-2)、PK (P2O5 60 kg hm-2、K2O 60 kg hm-2)、NK (N 225 kg hm-2、P2O5 60 kg hm-2)、NP (N 225 kg hm-2、P2O5 60 kg hm-2)和CK (不施肥)。试验小区面积67.5 m2, 采用随机区组排列, 每个处理重复3次。2011、2012和2013年度分别种植高粱、玉米和高粱。2011年和2012年的不同施肥措施使各处理土壤养分状况形成一定的差异(表1), 为此2013年研究了连续减氮、减磷和减钾对高粱生长、养分状况和品质的影响。2013年供试高粱品种为晋杂23, 5月2日播种, 5月10日出苗, 9月27日成熟, 10月7日收获, 留苗密度9.7× 104株hm-2。播种前50%氮肥及磷、钾肥作为底肥一次施入, 其余50%的氮肥在高粱拔节期追施。 1.2 测定项目与方法在出苗后38 d (拔节期)、54 d (大喇叭口期)、76 d (抽穗期)、100 d (灌浆始期)和117 d (灌浆中期)调查了功能叶片数(n=750)、最大叶叶面积(n=750)和功能叶叶面积(n=750)。从每个小区选10株, 每个处理3个小区, 5个处理150株, 共进行5次定位测量。在出苗后38 d (拔节期)、54 d (大喇叭口期)、76 d (抽穗期)、100 d (灌浆始期)、109 d (灌浆前期)、121 d (灌浆中期)、129 d (灌浆后期)、139 d (成熟期)、149 d (收获期)采集植株样品。每个小区取3株合成1个样品, 每个处理3个小区, 5个处理取15个合成样品, 共进行9次取样。将植株分为茎(n=135)、叶(n=135)和籽粒(n=75)在75℃烘48 h至恒重称得各部位生物量。烘干样品粉碎后用于氮(n=345)、磷(n=345)、钾(n=345)养分测定, 用浓H2SO4消煮, 全自动凯氏蒸氮仪测定植株N含量; 用1∶ 3浓HClO4和浓HNO3消煮, 钒钼黄法紫外分光光度计测定全P, 火焰光度计测定全K[13]。依据中华人民共和国国家标准GB/T 15686-2008 (高粱单宁含量测定)[14]、GB 5006-1985 (谷物籽粒粗淀粉测定法)[15]和GB 7684-87 (水稻、玉米、谷子籽粒直链淀粉测定法)[16]测定收获期籽粒中单宁(n=45)、总淀粉(n=45)和直链淀粉(n=45)含量, 支链淀粉为总粗淀粉与直链淀粉的差值。从每个小区取10个穗样合成1个籽粒样品, 每个处理3个小区, 5个处理共取45个籽粒样品。 表1 Table 1 表1(Table 1)
表1 2013年试验土壤基本化学性状 Table 1 The chemical properties at experiment soil in 2013
处理 Treatment
有机质 OM (g kg-1)
全氮 Total N (g kg-1)
全磷 Total P (g kg-1)
全钾 Total K (g kg-1)
硝态氮 NO3-N (mg kg-1)
有效磷 Available P (mg kg-1)
速效钾 Available K (mg kg-1)
NPK
11.80
0.63
0.93
20.45
21.15
9.37
137.0
PK
11.11
0.62
0.91
20.43
6.53
10.63
143.7
NK
10.16
0.68
0.89
20.19
29.18
8.05
144.0
NP
10.20
0.67
0.90
19.93
23.18
8.58
126.9
CK
10.92
0.63
0.84
20.08
5.51
7.51
135.7
NPK: application of nitrogen, phosphorus and potassium fertilizer; PK: application of phosphorus and potassium fertilizer; NK: application of nitrogen and potassium fertilizer; NP: application of nitrogen and phosphorus fertilizer; CK: no fertilizer application; OM: organic matter. NPK: 施氮磷钾肥; PK: 施磷钾肥; NK: 施氮钾肥; NP: 施氮磷肥; CK: 不施肥。
表1 2013年试验土壤基本化学性状 Table 1 The chemical properties at experiment soil in 2013
表2 不同施肥处理对高粱功能叶片数、最大叶叶面积和总功能叶面积的影响 Table 2 Effect of different fertilization treatments on number of photo synthetically active leaves, area of largest leaf, and area of photo synthetically active leaves of sorghum
生长指标 Growth index
处理 Treatment
出苗后天数Days after emergence (d)
38
53
76
98
117
单株功能叶片数 Number of functional leaf (leaves plant-1)
NPK
5.9± 0.62 a
7.9± 1.4 a
12.9± 2.4 ab
11.3± 1.1 ab
7.2± 1.1 a
PK
5.3± 0.90 b
6.3± 0.9 b
12.0± 1.8 bc
10.5± 1.6 b
8.1± 1.6 a
NK
5.5± 0.74 ab
7.8± 0.8 a
12.9± 1.0 ab
11.5± 1.3 a
7.1± 1.1 a
NP
5.9± 0.46 a
7.9± 1.1 a
13.3± 1.5 a
11.3± 1.4 ab
7.5± 1.4 a
CK
5.7± 0.82 ab
6.1± 0.9 b
11.1± 2.4 c
9.3± 1.2 c
7.2± 2.1 a
单株最大叶叶面积 Area of largest leaf (cm2 plant-1)
NPK
339.9± 40.3 a
775.8± 92.2 a
770.7± 97.7 a
756.3± 65.0 a
739.1± 67.3 a
PK
281.6± 32.0 b
670.3± 97.5 b
701.4± 97.0 b
668.3± 99.1 b
695.6± 95.1 a
NK
298.4± 52.5 b
753.7± 60.0 a
765.7± 54.0 a
764.6± 60.1 a
747.6± 65.4 a
NP
305.1± 62.9 ab
748.1± 44.0 a
757.2± 48.5 a
741.3± 37.5 a
725.4± 45.5 a
CK
301.1± 47.6 b
590.6± 96.5 c
649.2± 80.6 b
619.7± 69.1 b
595.3± 90.7 b
单株总功能叶面积 Area of total functional leaves (cm2 plant-1)
NPK
940.7± 141.6 a
3378.6± 163.0 a
7365.1± 1290 a
6544.1± 950 a
4160.1± 76.7 a
PK
813.0± 101.8 b
2341.3± 101.8 b
5656.6± 1216 b
5089.3± 1403 b
3937.3± 1307 a
NK
829.1± 169.8 b
3183.2± 169.8 ab
7041.8± 780 a
6659.8± 1157 a
3895.5± 817 a
NP
839.0± 198.5 ab
3466.9± 198.5 a
7081.9± 1201 a
6222.1± 600 a
4153.1± 785 a
CK
803.1± 126.9 b
1947.8± 126.9 c
4778.9± 1088 c
4073.2± 974 c
3069.5± 1462 b
Abbreviations are the same as given those in Table 1. Values followed by different letters within the same column are significantly different at the 0.05 probability level among treatments. 缩写同表1。同列不同字母表示不同处理在 0.05水平上差异显著。
表2 不同施肥处理对高粱功能叶片数、最大叶叶面积和总功能叶面积的影响 Table 2 Effect of different fertilization treatments on number of photo synthetically active leaves, area of largest leaf, and area of photo synthetically active leaves of sorghum
图2 不同施肥处理对高粱籽粒产量、千粒重和单穗重的影响Fig. 2 Effect of different fertilization treatments on average grain yield, 1000-grain weight, and grain weight per panicle of sorghum
表3 不同施肥处理对高粱叶N、P和K含量的影响 Table 3 Effect of different fertilization treatments on the contents of N, P, and K in leaves of sorghum (g kg-1)
养分 Nutrient
处理 Treatment
出苗后天数 Days after emergence (d)
38
54
76
100
109
121
129
139
149
N
NPK
29.6± 2.5 a
26.6± 0.2 a
22.9± 2.8 a
19.7± 2.1 a
15.2± 1.1 a
15.9± 0.4 a
14.5± 2.4 a
16.1± 1.5 a
16.2± 2.6 a
PK
20.1± 0.5 b
13.8± 0.5 c
13.6± 2.1 b
13.9± 2.9 b
10.5± 4.3 b
10.6± 3.1 b
9.8± 1.0 b
12.4± 3.0 b
13.2± 1.5 a
NK
27.2± 2.0 a
24.6± 0.2 b
21.6± 1.1 a
18.1± 0.7 a
15.5± 0.8 a
12.8± 0.3 ab
13.6± 2.2 a
16.2± 1.0 a
14.4± 1.0 a
NP
30.7± 1.6 a
23.8± 0.1 b
22.1± 0.7 a
18.5± 0.2 a
16.3± 1.4 a
16.2± 0.5 a
13.9± 0.9 a
17.0± 1.3 a
13.9± 1.3 a
CK
18.7± 2.5 b
14.9± 2.2 c
12.4± 1.9 b
8.4± 0.5 c
7.9± 1.0 b
12.0± 3.2 b
8.9± 3.2 b
9.3± 1.9 b
9.9± 1.9 b
P
NPK
3.4± 0.1 a
2.9± 0.1 a
2.7± 0.3 ab
2.1± 0.3 a
1.9± 0.3 a
1.8± 0.1 a
1.7± 0.1 a
1.4± 0.3 a
1.3± 0.1 ab
PK
3.4± 0.1 a
2.7± 0.1 a
2.2± 0.3 ab
2.1± 0.4 a
2.1± 0.1 ab
1.6± 0.5 a
1.4± 0.5 a
1.4± 0.3 a
1.5± 0.2 ab
NK
2.8± 0.2 b
2.8± 0.4 a
2.5± 0.3 ab
1.8± 0.3 a
1.9± 0.1 ab
1.4± 0.3 a
1.3± 0.3 a
1.4± 0.3 a
1.4± 0.3 ab
NP
3.4± 0.4 a
3.2± 0.2 a
2.8± 0.4 a
2.0± 0.3 a
2.0± 0.2 ab
1.7± 0.2 a
1.6± 0.2 a
1.6± 0.1 a
1.2± 0.3 b
CK
3.3± 0.1 a
2.8± 0.2 a
2.2± 0.1 b
1.8± 0.2 a
2.1± 0.3 b
1.4± 0.3 a
1.2± 0.3 a
1.5± 0.6 a
1.7± 0.1 a
K
NPK
28.1± 2.8 a
24.6± 5.2 a
13.0± 2.0 ab
14.6± 2.3 ab
9.5± 1.2 a
8.4± 2.8 ab
6.1± 0.1 a
5.7± 0.4 a
8.4± 1.3 a
PK
29.4± 4.0 a
26.1± 1.2 a
15.6± 0.8 a
15.7± 1.1 a
11.2± 1.9 a
9.4± 2.2 a
5.5± 1.1 a
5.8± 0.9 a
8.5± 0.7 a
NK
26.6± 2.4 a
22.9± 3.1 a
13.5± 1.0 ab
12.3± 4.4 ab
9.3± 2.4 a
6.0± 0.6 b
4.8± 1.0 a
5.3± 0.3 ab
7.3± 2.1 a
NP
24.4± 2.9 a
19.9± 3.6 a
11.4± 2.4 b
10.4± 3.9 b
7.7± 2.5 a
7.0± 0.4 b
5.2± 1.0 a
5.3± 0.8 ab
6.9± 1.6 a
CK
26.6± 2.1 a
23.0± 4.3 a
11.5± 1.1 b
13.8± 0.4 ab
10.0± 1.5 a
6.1± 0.3 b
5.0± 0.3 a
4.5± 0.7 b
7.6± 0.6 a
Abbreviations are the same as those given in Table 1. Values followed by different letters within the same column are significantly different at the 0.05 probability level among treatments. 缩写同表1。同列不同字母表示不同处理在0.05水平上差异显著。
表3 不同施肥处理对高粱叶N、P和K含量的影响 Table 3 Effect of different fertilization treatments on the contents of N, P, and K in leaves of sorghum (g kg-1)
表4 Table 4 表4(Table 4)
表4 不同施肥处理对高粱茎N、P和K含量的影响 Table 4 Effect of different fertilization treatments on the contents of N, P, and K in stem of sorghum (g kg-1)
养分 Nutrient
处理 Treatment
出苗后天数 Days after emergence (d)
38
54
76
100
109
121
129
139
149
N
NPK
24.3± 2.1 a
15.9± 2.3 a
9.4± 1.8 a
4.5± 0.8 a
4.6± 0.2 a
4.5± 0.2 a
4.0± 0.5 a
5.3± 0.2 a
5.1± 1.3 a
PK
12.0± 1.0 b
5.6± 1.3 c
4.4± 1.0 b
2.6± 0.4 b
2.6± 0.6 b
3.1± 1.0 b
2.8± 0.6 b
3.8± 0.3 b
4.7± 0.3 a
NK
25.4± 1.2 a
12.9± 1.3 b
12.0± 2.9 a
4.2± 0.5 a
4.3± 0.4 a
4.5± 0.6 a
4.3± 0.5 a
3.7± 0.3 b
4.7± 0.7 a
NP
25.0± 1.5 a
14.6± 1.2 a
9.5± 1.7 a
4.3± 0.4 a
4.5± 0.2 a
4.9± 0.3 a
4.4± 0.4 a
5.1± 0.5 a
5.0± 0.7 a
CK
10.7± 2.1 b
5.7± 0.8 c
3.6± 0.4 b
2.2± 0.7 b
2.0± 0.3 b
3.2± 0.4 b
2.7± 0.6 b
3.8± 0.1 b
3.0± 0.2 b
P
NPK
3.3± 0.3 a
1.6± 0.2 ab
1.7± 0.2 a
0.7± 0.4 b
0.5± 0.1 b
0.7± 0.2 a
0.7± 0.1 a
0.6± 0.2 a
0.7± 0.2 b
PK
3.8± 0.2 a
1.9± 0.3 a
1.8± 0.1 a
1.0± 0.3 ab
1.3± 0.9 a
0.5± 0.1 a
0.8± 0.5 a
0.6± 0.3 a
1.0± 0.2 ab
NK
3.1± 0.5 a
1.3± 0.1 b
1.5± 0.3 a
0.5± 0.3 b
0.6± 0.1 b
0.5± 0.1 a
0.6± 0.4 a
0.8± 0.6 a
0.7± 0.1 b
NP
3.4± 0.2 a
1.5± 0.2 b
1.8± 0.2 a
0.5± 0.1 b
0.7± 0.1 b
0.6± 0.1 a
0.6± 0.1 a
0.7± 0.2 a
0.8± 0.1 b
CK
3.6± 0.4 a
2.0± 0.4 a
1.7± 0.1 a
1.3± 0.1 a
1.4± 0.2 a
0.5± 0.1 a
0.5± 0.1 a
0.5± 0.1 a
1.1± 0.1 a
K
NPK
38.0± 4.8 a
29.6± 5.7 ab
25.0± 7.2 a
22.9± 3.1 a
28.0± 2.0 a
27.6± 2.4 a
25.6± 5.0 a
23.1± 7.4 a
18.9± 4.1 a
PK
37.4± 2.9 a
30.2± 2.8 a
25.3± 4.6 a
22.4± 3.6 a
23.9± 1.5 b
25.5± 0.5 ab
23.0± 1.3 a
19.0± 2.8 a
17.6± 2.6 a
NK
41.5± 1.8 a
26.3± 5.7 ab
19.3± 4.2 a
24.0± 2.7 a
27.2± 2.7 a
26.3± 4.8 ab
22.5± 3.5 a
15.9± 2.6 a
20.2± 1.2 a
NP
38.1± 4.5 a
20.4± 8.0 b
17.2± 0.6 a
22.2± 3.9 a
26.9± 2.0 a
21.1± 1.8 b
20.3± 4.1 a
15.1± 4.1 a
16.5± 3.0 a
CK
36.2± 1.0 a
26.8± 2.7 ab
20.5± 3.2 a
24.1± 1.2 a
20.9± 3.5b
24.9± 4.1 ab
23.5± 2.8 a
22.9± 6.0 a
20.3± 2.8 a
Abbreviations are the same as those given in Table 1. Values followed by different letters within the same column are significantly different at the 0.05 probability level among treatments. 缩写同表1。同列不同字母表示不同处理在0.05水平上差异显著。
表4 不同施肥处理对高粱茎N、P和K含量的影响 Table 4 Effect of different fertilization treatments on the contents of N, P, and K in stem of sorghum (g kg-1)
表5 Table 5 表5(Table 5)
表5 不同施肥处理对高粱籽粒N、P和K含量的影响 Table 5 Effect of different fertilization treatments on the contents of N, P, and K in grains of sorghum (g kg-1)
养分 Nutrient
处理 Treatment
出苗后天数 Days after emergence (d)
100
109
121
129
139
149
N
NPK
13.7± 1.1 ab
13.5± 0.4 ab
14.4± 1.1 a
14.6± 1.0 a
15.4± 0.8 a
16.1± 1.8 a
PK
12.4± 0.2 ab
10.8± 3.3 b
11.4± 1.8 b
12.2± 2.2 b
12.5± 1.7 bc
11.5± 0.3 b
NK
13.9± 1.6 a
13.7± 0.8 ab
13.7± 0.7 ab
13.7± 1.0 b
14.4± 0.8 ab
14.9± 1.7 a
NP
14.4± 1.5 a
14.3± 1.3 a
14.8± 0.4 a
14.2± 0.1 ab
14.7± 1.0 ab
15.4± 2.0 a
CK
11.5± 1.3 b
10.9± 0.1 b
11.8± 1.5 b
12.2± 1.4 b
12.0± 1.7 c
9.3± 0.4 b
P
NPK
3.1± 0.1 a
3.2± 0.2 a
3.0± 0.5 a
3.3± 0.2 a
3.8± 0.3 a
3.4± 0.4 a
PK
2.9± 0.5 a
3.0± 0.3 a
2.8± 0.2 a
2.9± 0.1 b
3.1± 0.2 a
2.9± 0.3 a
NK
2.8± 0.4 a
2.9± 0.5 a
3.1± 0.4 a
2.9± 0.2 b
3.3± 0.4 a
3.2± 0.1 a
NP
3.1± 0.1 a
2.7± 0.2 a
2.8± 0.2 a
2.8± 0.2 b
3.0± 0.1 a
2.9± 0.1 a
CK
3.0± 0.2 a
3.0± 0.4 a
2.7± 0.3 a
3.1± 0.2 b
3.3± 0.6 a
3.1± 0.3 a
K
NPK
3.4± 0.1 a
3.4± 1.0 a
3.1± 0.5 ab
2.9± 0.2 a
3.0± 0.3 a
2.6± 0.4 a
PK
3.6± 0.4 a
3.2± 0.3 a
3.3± 0.4 a
3.0± 0.1 a
3.1± 0.2 a
2.6± 0.3 a
NK
3.6± 0.5 a
3.2± 0.7 a
2.9± 0.1 ab
3.1± 0.2 a
3.0± 0.3 a
2.5± 0.2 a
NP
3.3± 0.3 a
2.8± 0.4 a
2.7± 0.1 b
3.1± 0.2 a
2.8± 0.3 a
2.4± 0.1a
CK
3.7± 0.3 a
2.9± 0.5 a
2.7± 0.1 b
3.0± 0.1 a
3.0± 0.1 a
2.6± 0.2 a
Abbreviations are the same as those given in Table 1. Values followed by different letters within the same column are significantly different at the 0.05 probability level among treatments. 缩写同表1。同列不同字母表示不同处理在0.05水平上差异显著。
表5 不同施肥处理对高粱籽粒N、P和K含量的影响 Table 5 Effect of different fertilization treatments on the contents of N, P, and K in grains of sorghum (g kg-1)
表6 不同施肥处理对高粱NPK养分积累的影响 Table 6 Effects of different fertilization treatments on the accumulation of NPK nutrients
NPK养分积累量 Accumulation of NPK nutrients
施肥处理 Fertilization treatment
NPK
PK
NK
NP
CK
N总累积量 Total N accumulation (kg hm-2)
312.4± 29.9 a
210.4± 32.5 ab
288.9± 20.0 a
284.5± 30.6 a
104.8± 10.0 b
营养体N累积量 N accumulation in vegetation (kg hm-2)
101.3± 12.4 a
71.0± 5.2 ab
96.8± 7.0 ab
99.7± 14.3 ab
42.3± 3.3 b
籽粒N累积量 N accumulation in grains (kg hm-2)
211.1± 15.2 a
139.4± 25.8 ab
192.1± 14.7 ab
184.8± 14.7 ab
62.5± 7.9 b
籽粒N养分分配率Distribution rate of grain N nutrient (%)
67.8± 1.2 a
66.2± 5.9 a
66.5± 1.5 a
65.0± 1.3 a
59.7± 2.8 a
P总累积量Total N accumulation (kg hm-2)
57.2± 1.7a
39.0± 0.7 b
53.7± 1.7 a
47.1± 2.7 ab
31.7± 4.2 b
营养体P累积量 N accumulation in vegetation (kg hm-2)
12.6± 1.6 a
12.3± 1.0 a
12.1± 0.6 a
11.8± 1.9 a
10.6± 0.7 a
籽粒P累积量 P accumulation in grains (kg hm-2)
44.6± 2.6 a
26.7± 1.7 c
41.6± 1.2 ab
35.3± 1.8 b
21.1± 3.1 c
籽粒P养分分配率Distribution rate of grain P nutrient (%)
77.9± 2.9 a
68.4± 3.2 b
77.5± 1.4 a
74.9± 3.1 a
66.6± 1.1 b
K总累积量 Total K accumulation (kg hm-2)
257.5± 10.6 a
187.2± 19.4 ab
249.1± 1.8 ab
205.5± 34.5 ab
152.9± 21.7 b
营养体K累积量 K accumulation in vegetation (kg hm-2)
223.5± 8.8 a
164.1± 18.6 ab
216.7± 1.3 ab
176.4± 34.2 ab
135.4± 20.0 b
籽粒K累积量 K accumulation in grains (kg hm-2)
34.0± 2.7 a
23.1± 1.0 b
32.4± 0.6 a
29.1± 2.5 ab
17.5± 1.8 b
籽粒K养分分配率Distribution rate of grain K nutrient (%)
13.2± 0.7 a
12.3± 0.9 a
13.0± 0.1 a
14.2± 2.2 a
11.4± 0.5 a
Abbreviations are the same as those given in Table 1. Values followed by different letters within the same horizontal column are significantly different at the 0.05 probability level among treatments. 缩写同表1。同行不同字母表示不同处理在0.05水平上差异显著。
表6 不同施肥处理对高粱NPK养分积累的影响 Table 6 Effects of different fertilization treatments on the accumulation of NPK nutrients
表7 不同施肥处理对高粱籽粒品质的影响 Table 7 Effects of different fertilization on grain quality of sorghum
施肥处理 Fertilization Treatment
总淀粉含量 Total starch (%)
淀粉组成 Starch components
蛋白质含量 Protein (g kg-1)
单宁含量 Tannic (g kg-1)
直链淀粉 Amylose (%)
支链淀粉 Amylopectin (%)
直链/支链比值 Amylose/amylopectin
NPK
66.28± 1.96 a
19.75± 2.06 b
80.25± 2.06 a
0.22
100.83± 6.59 a
13.67± 0.79 a
PK
66.42± 2.89 a
22.37± 1.27 a
77.63± 1.27 a
0.29
71.68± 1.02 b
11.14± 0.31 b
NK
66.42± 2.50 a
17.69± 1.71 b
82.31± 1.71 a
0.21
93.05± 6.08 a
11.64± 0.29 ab
NP
66.68± 0.78 a
22.51± 2.24 a
77.49± 2.24 a
0.29
96.33± 7.18 a
12.60± 0.06 ab
CK
71.88± 0.61 a
23.29± 2.23 a
76.71± 2.23 a
0.30
57.99± 1.32 b
11.83± 0.50 ab
缩写同表1。同列不同字母表示不同处理在0.05水平上差异显著。 Abbreviations are the same as those given in Table 1. Values followed by different letters within the same column are significantly different at the 0.05 probability level among treatments.
表7 不同施肥处理对高粱籽粒品质的影响 Table 7 Effects of different fertilization on grain quality of sorghum
4 结论在高粱/玉米轮作体系下, 连续3年土壤养分耗竭使土壤氮磷钾的供给能力分别下降30.1%、1.3%和8.1%, 不施肥和不施氮肥显著降低了粒用高粱的最大叶叶面积和单株总功能叶面积, 干物质积累和籽粒产量, 氮磷养分吸收以及籽粒中支链淀粉、蛋白质和丹宁含量。不施氮肥对高粱的影响明显大于不施钾肥和不施磷肥的影响。合理的氮磷钾肥配施有利于促进粒用高粱的生长发育, 增加干物质的积累, 提高产量和改善品质。 The authors have declared that no competing interests exist.
SatoS, ClementeT, DweikatI. Identication of an elite sorghum genotype with high in vitro performance capacity. , 2004, 40: 57-60[本文引用:1][JCR: 1.162]
[2]
卢庆善, 邹剑秋, 朱凯, 张志鹏. 试论我国高粱产业发展一论全国高粱生产优势区. , 2009, 29(2): 78-80Lu QS, Zou JQ, ZhuK, Zhang ZP. Discussion on development of sorghum industries in China: discussion on superiority area of sorghum production in China. , 2009, 29(2): 78-80 (in Chinese with English abstract)[本文引用:2][CJCR: 0.5562]
[3]
SherA, BarbantiL, AnsarM, Malik MA. Growth response and plant water status in forage sorghum (Sorghum bicolor L. Moench) cultivars subjected to decreasing levels of soil moisture. , 2013, 7: 801-808[本文引用:1][JCR: 1.632]
[4]
FarráI, Faci JM. Comparative response of maize (Zea mays L. ) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. , 2006, 83: 135-143[本文引用:1]
[5]
山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. , 2009, 42: 2342-2348ShanL, Xu BC. Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions. , 2009, 42: 2342-2348 (in Chinese with English abstract)[本文引用:2][CJCR: 1.4]
[6]
王鑫, 李志强, 谷卫彬, 石雷, 唐宇丹, 高辉远, 赵世杰, 姜闯道. 盐胁迫下高粱新生叶片结构和光合特性的系统调控. , 2010, 36: 1941-1949WangX, Li ZQ, Gu WB, ShiL, Tang YD, Gao HY, Zhao SJ, Jiang CD. Systemic regulation of anatomic structure and photosynthetic characteristics of developing leaves in sorghum seedlings under salt stress. , 2010, 36: 1941-1949 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[7]
Moore WJ, DitmoreM, TeBeest D O. The effects of cropping history on grain sorghum yield and anthracnose severity in Arkansas. , 2009, 28: 737-743[本文引用:1][JCR: 1.539]
[8]
Patil SL, Sheelavantar MN. Soil water conservation and yield of winter sorghum (Sorghum bicolor L. Moench) as influenced by tillage, organic materials and nitrogen fertilizer in semi-arid tropical India. , 2006, 89: 246-257[本文引用:1][JCR: 2.575]
[9]
MesfinT, Tesfahunegn GB, Wortmann CS, NikusO, MamoM. Tied-ridging and fertilizer use for sorghum production in semi-arid Ethiopia. , 2009, 85: 87-94[本文引用:1]
[10]
董二伟, 王劲松, 韩鹏远, 王立革, 丁玉川, 焦晓燕. 高粱干物质积累、养分吸收特点及其分配规律的研究. , 2012, 40: 645-650Dong EW, Wang JS, Han PY, Wang LG, Ding YC, Jiao XY. Study on dry matter accumulation, nutrient uptake characteristics and their distribution rule in sorghum. , 2012, 40: 645-650 (in Chinese with English abstract)[本文引用:1][CJCR: 0.875]
[11]
王宜伦, 李潮海, 何萍, 金继运, 韩燕来, 张许, 谭金芳. 超高产夏玉米养分限制因子及养分吸收积累规律研究. , 2010, 16: 559-566Wang YL, Li CH, HeP, Jin JY, Han YL, ZhangX, Tan JF. Nutrient restrictive factors and accumulation of super-high- yield summer maize. , 2010, 16: 559-566 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
[12]
马建华, 王玉国, 孙毅, 尹美强, 牛常青, 杨艳君. 低磷胁迫不同品种苗期形态及生理指标的影响. , 2013, 19: 1083-1091Ma JH, Wang YG, SunY, Yin MQ, Niu CQ, Yang YJ. Effects of low phosphorus stress on the morphologies and physiological indices of different sorghum cultivars at seedling stage. , 2013, 19: 1083-1091 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
霍权恭, 范璐, 周展明. 高粱单宁含量的测定(GB/T 15686-2008), Huo QG, FanL, Zhou ZM. Sorghum-Determiination of Tannin Content (GB/T 15686-2008), [本文引用:1]
[15]
谷物籽粒粗淀粉测定方法(GB5006-1985), Determination of Crude starch in Cereals Seeds (GB5006-1985) , [本文引用:1]
[16]
水稻、玉米、谷子籽粒淀粉直链淀粉测定法(GB768-1987) , Determination of Amylase in Grains of Rice, Maize and Millet (GB7684-1987), [本文引用:1]
[17]
王建国, 刘鸿翔, 王守宇, 韩晓增. 黑土农田养分平衡与养分消长规律. , 2003, 40: 246-251Wang JG, Liu HX, Wang SY, Han XZ. Law of nutrient equilibrium, gain and loss in black soil farmland . , 2003, 40: 246-251 (in Chinese with English abstract)[本文引用:1][CJCR: 1.336]
[18]
申丽霞, 王璞, 兰林旺, 孙西欢. 施氮对夏玉米碳氮代谢及穗粒数形成的影响. , 2007, 13: 1074-1079Shen LX, WangP, Lan LW, Sun XH. Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. , 2007, 13: 1074-1079 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
[19]
王晓楠, 吴贳玉, 付连双, 李卓夫. 氮肥处理对春小麦穗粒数形成阶段的影响. , 2011, 42(4): 32-35Wang XN, Wu SY, Fu LS, Li ZF. Effect of nitrogen fertilizer treatment on growth stage of spring wheat kernels per spike. , 2011, 42(4): 32-35 (in Chinese with English abstract)[本文引用:1][CJCR: 0.161]
[20]
申瑞玲, 陈明, 任贵兴. 高粱淀粉的研究进展. , 2012, 27(7): 123-128Shen RL, ChenM, Ren GX. Research progress of the sorghum starch. , 2012, 27(7): 123-128 (in Chinese with English abstract)[本文引用:1]
[21]
孔令旗, 张文毅, 李振武. 高粱籽粒淀粉含量的配合力与杂种优势分析. , 1992, (1): 18-20Kong LQ, Zhang WY, Li ZW. Combining ability and heterosis analysis of starch content in sorghum grains. , 1992, (1): 18-20 (in Chinese with English abstract)[本文引用:1]
[22]
余飞, 邓丹霞, 董婧, 黄赣辉. 直连淀粉含量的影响因素及其应用研究进展. , 2007, 28: 604-607YuF, Deng DX, DongQ, Huang GH. Influence factors of amylase content and its applied research progress. , 2007, 28: 604-607 (in Chinese with English abstract)[本文引用:1][CJCR: 1.119]
[23]
李超, 肖木辑, 周宇飞, 许文娟, 黄瑞冬. 不同播期对高粱籽粒淀粉含量的影响. , 2009, 40: 708-711LiC, Xiao MJ, Zhou YF, Xu WJ, Huang RD. Effect of sowing dates on the starch contentsin sorghum grains. , 2009, 40: 708-711 (in Chinese with English abstract)[本文引用:1][CJCR: 0.556]
[24]
于泳, 黄瑞冬, 赵尚文, 蒋文春. 不同施氮水平对高粱子粒淀粉积累规律的影响. , 2008, (5): 20-24YuY, Huang RD, Zhao SW, Jiang WC. Effect of different nitrogen application levels on starch accumulation in sorghum grains. , 2008, (5): 20-24 (in Chinese with English abstract)[本文引用:1][CJCR: 0.788]
[25]
曹昌林, 董良利, 宋旭东, 史丽娟. 氮、磷、钾配施对高粱籽粒淀粉含量的影响. , 2010, (5): 68-70Cao CL, Dong LL, Song XD, Shi LJ. Effects of nitrogen, phosphorus and potassium on starch content in sorghum grains. , 2010, (5): 68-70 (in Chinese with English abstract)[本文引用:1][CJCR: 0.593]
[26]
高欣, 肖木辑, 周宇飞, 许文娟, 黄瑞冬. 种植密度对高粱子粒淀粉积累的影响. , 2009, (6): 35-37GaoX, Xiao MJ, Zhou YF, Xu WJ, Huang RD. Effect of planting density on starch accumulation in sorghum grains. , 2009, (6): 35-37 (in Chinese with English abstract)[本文引用:1][CJCR: 0.788]
[27]
尹静, 胡胜连, 肖佳雷, 李文雄. 不同形态氮肥对春小麦品种籽粒淀粉及其组分的调节效应. , 2006, 32: 1294-1300YinJ, Hu SL, Xiao JL, Li WX. Effect of different types of n-fertilizer on the accumulation of grain starch and its components in different spring wheat cultivars. , 2006, 32: 1294-1300 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[28]
卢庆善, 高粱学. 北京: 中国农业出版社, 1999. pp 227-229Lu Q S. , Beijing: China Agricultural Press, 1999. pp 227-229(in Chinese)[本文引用:2]
[29]
戴廷波, 邹铁祥, 荆奇, 姜东, 曹卫星. 氮、钾水平对小麦籽粒蛋白质合成关键酶活性的影响. , 2009, 29: 4976-4982Dai TB, Zou TX, JingQ, JiangD, Cao WX. Effects of nitrogen and potassium fertilization on key regulation enzyme activities involved in grain protein formation in w inter wheat. , 2009, 29: 4976-4982 (in Chinese with English abstract)[本文引用:1]
[30]
Mulimani VH, SupriyaD. Tannic acid content in sorghum (Sorghum bicolour M. ): effects of processing. , 1994, 46: 195-200[本文引用:1][JCR: 2.416]
[31]
宋高友, 苏益民, 陆伟. 酒业高粱育种方向的探讨. , 1996, 17(4): 165-168Song GY, Su YM, LuW. Discussion on sorghum breading direction of wine industry. , 1996, 17(4): 165-168 (in Chinese with English abstract)[本文引用:1][CJCR: 1.032]