关键词:开顶式气室; 温度; CO2浓度; 双季稻; 吸氮量; 氮素利用率 Effects of Elevated Air Temperature and Carbon Dioxide Concentration on Nitrogen Use of Double Rice ( Oryza sativaL.) in Open-top Chambers WANG Bin1,2, WAN Yun-Fan1,*, GUO Chen3, LI Yu-E1, YOU Song-Cai1, QIN Xiao-Bo1, CHEN Hui-Lin2 1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences / Key Laboratory for Agro-Environment, Ministry of Agriculture, Beijing 100081, China
2 Hainan Institute of Meteorological Science / Key Laboratory of South China Sea Meteorology and Disaster Mitigation, Haikou 570203, China
3 College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan 430070, China
AbstractPreventing 2°C of warming and restricting the CO2 level to 450 µL L-1 are the safety threshold for climate change based on the Copenhagen Consensus. It is an important reference for the security of rice yield to study the influence of elevated air temperature and CO2 concentration on the nitrogen use of rice. In this paper, a modified open-top chamber (OTC) device was used to simulate relative 60 µL L-1 CO2 concentration rise (based on CO2 background concentration of 390 µL L-1) and 2°C temperature increase scenario in a double rice field experiment with Liangyou 287 and Xiangfengyou 9 as the early and late rice varieties respectively. There were five treatments with three replications: 1) UC: Paddy field without OTC cover; 2) CK: Check OTC with the similar temperature and CO2 concentration to the field environment; 3) CT: OTC with 2°C temperature increase; 4) CC: OTC with 60 µL L-1 CO2 concentration elevated; 5) CTC: OTC with 2°C temperature increase and 60 µL L-1 CO2 concentration elevated. The nitrogen accumulation, translocation and utilization in different treatments were explored. The results showed significant interactions between temperature increase and CO2 concentration elevated on the yield and nitrogen use. In early rice CC and CTC achieved an increase for grain yield (19.7% and 2.0%) and nitrogen accumulation (15.7% and 5.1%) compared with CK while CT presented a decrease. In late rice warming and high CO2concentration (CT, CC, and CTC) benefited the grain yield and nitrogen uptake, increasing 9.2%, 14.4%, 18.8% and 7.3%, 10.2%, 15% compared with CK respectively. Nitrogen translocation and contribution efficiency (from stem and leaf to grain) of CC and CTC was lower than that of CK in early rice, and higher than that of CK in late rice. Nitrogen recovery efficiency of CC and CTC reached to 45.7% and 48.5% in early and late rice respectively, achieving the highest increase of 35.3% and 33.1% compared with that of CK. CC and CTC got the highest nitrogen agronomic efficiency by 23.1 kg kg-1 and 26.9 kg kg-1 in early and late rice respectively, and CC got the highest nitrogen physiological efficiency by 50.7 kg kg-1 and 56 kg kg-1 in both early and late rice. There existed no significant difference between CK and UC, which suggested the impact on rice growth under OTC covering was slight. In conclusion, it tends to a negative effect with 2°C temperature increase on yield and nitrogen utilization for early rice, while a positive effect for late rice. A positive effect with 60 µL L-1 CO2 concentration elevated always exists during double rice growth. The condition of 2°C temperature increase and 60 µL L-1 CO2 concentration elevated has an antagonistic effect on early rice, while a synergistic effect on late rice.
Keyword:Open-top chamber; Temperature; CO2 concentration; Double rice; Nitrogen accumulation; Nitrogen use efficiency Show Figures Show Figures
图3 增温和增CO2下双季稻地上部分的氮素吸收动态Fig. 3 Dynamic of N accumulation in double rice under elevated temperature and CO2 concentration
表2 Table 2 表2(Table 2)
表2 不同增温和增CO2处理的水稻产量和含氮率 Table 2 Yield and N content of double rice under elevated temperature and CO2 concentration
处理 Treatment
籽粒产量 Grain yield (kg hm-2)
籽粒含氮率 Nitrogen content (%)
增产 Yield increase rate (%)
稻草产量 Straw yield (kg hm-2)
稻草含氮率 Nitrogen content of straw (%)
稻草增产 Straw yield increase rate (%)
早稻Early rice
UC
7711.0± 182.5 bB
1.20± 0.02 a
1.2
5419.2± 173.8 eC
0.87± 0.05 aA
-17.6
CK
7617.3± 189.6 bB
1.19± 0.06 ab
—
6575.2± 97.8 dC
0.73± 0.05 abAB
—
CT
7544.7± 188.6 bB
1.17± 0.05 ab
-1.0
7159.4± 199.4 cC
0.64± 0.05 bB
8.9
CC
9118.6± 158.4 aA
1.09± 0.01 b
19.7
9324.1± 106.7 aA
0.65± 0.01 bB
41.8
CTC
7772.2± 162.5 bB
1.12± 0.01 ab
2.0
8395.3± 52.9 bB
0.72± 0.01 bAB
27.7
晚稻Late rice
UC
7982.7± 93.2 cB
1.07± 0.02 a
-1.9
8126.0± 165.5 cC
0.73± 0.02 aA
-5.3
CK
8134.3± 183.0 cB
1.12± 0.02 a
—
8580.5± 271.3 cBC
0.63± 0.03 bAB
—
CT
8882.4± 176.8 bAB
1.10± 0.03 a
9.2
9374.6± 242.6 bAB
0.61± 0.03 bAB
9.3
CC
9303.7± 250.1 abA
1.06± 0.02 a
14.4
9979.2± 107.1 abA
0.61± 0.02 bAB
16.3
CTC
9664.6± 216.6 aA
1.09± 0.04 a
18.8
10403.7± 337.4 aA
0.59± 0.03 bB
21.2
Data in the table are presented as “ mean value ± standard error” . Values within a column followed by different lowercase letters are significant by different at P< 0.05, and those by different capital letters are significant by different at P< 0.01. UC: paddy field without OTC cover; CK: Check OTC with the similar temperature and CO2 concentration to the field environment; CT: OTC with 2° C temperature increase; CC: OTC with 60 µ L L-1 CO2 concentration elevated; CTC: OTC with 2° C temperature increase and 60 µ L L-1 CO2 concentration elevated. 表中数值为“ 平均值± 标准误” , 每列中不同小写字母表示处理间差异显著(P< 0.05), 不同大写字母表示处理间差异极显著(P< 0.01)。UC:大田环境; CK: 对照; CT: OTC控制增温2℃; CC: OTC控制增CO2浓度60 µ L L-1; CTC: OTC控制增温2℃和增CO2浓度60 µ L L-1。
表2 不同增温和增CO2处理的水稻产量和含氮率 Table 2 Yield and N content of double rice under elevated temperature and CO2 concentration
表3 不同增温和增CO2处理的水稻氮素转运和分配 Table 3 Nitrogen translocation and distribution in double rice under elevated temperature and CO2 concentration
处理 Treatment
茎叶氮素转运量 Nitrogen translocation amount (kg hm-2)
茎叶氮素转运率 Nitrogen translocation efficiency (%)
茎叶氮素贡献率 Nitrogen contribution efficiency (%)
氮素收获指数 Nitrogen harvest index (%)
早稻Early rice
UC
35.6± 3.3 a
42.9± 3.0 ab
38.7± 4.9 a
66.3± 0.4 aA
CK
37.8± 3.2 a
44.3± 3.9 ab
42.0± 3.8 a
65.5± 1.5 abA
CT
40.8± 2.9 a
47.0± 3.1 a
46.4± 3.6 a
65.8± 1.1 abA
CC
35.0± 4.3 a
36.6± 3.6 b
35.4± 4.8 a
62.3± 0.8 bcAB
CTC
35.9± 3.0 a
38.3± 2.9 ab
41.1± 3.1 a
60.2± 1.3 cB
晚稻Late rice
UC
39.0± 1.7 bB
39.8± 1.9 b
46.3± 2.0 bAB
58.8± 1.1 a
CK
38.3± 2.8 bB
41.7± 2.4 b
42.2± 3.3 bB
63.0± 0.6 a
CT
55.8± 5.1 aAB
49.2± 2.6 a
57.0± 4.8 aAB
63.1± 0.7 a
CC
56.7± 1.3 aA
48.1± 1.0 ab
57.8± 1.2 aA
61.6± 1.0 a
CTC
63.0± 6.6 aA
50.6± 4.5 a
59.8± 4.5 aA
63.2± 3.1 a
Data in the table are presented as “ mean value ± standard error” . Values within a column followed by different lowercase letters are significant by different at P< 0.05, and those by different capital letters are significant by different at P< 0.01. Abbreviations are the same as those given in Table 2. 表中数值为“ 平均值± 标准误” , 每列中不同小写字母表示处理间差异显著(P< 0.05), 不同大写字母表示处理间差异极显著(P< 0.01)。缩写同表2。
表3 不同增温和增CO2处理的水稻氮素转运和分配 Table 3 Nitrogen translocation and distribution in double rice under elevated temperature and CO2 concentration
表4 Table 4 表4(Table 4)
表4 不同增温和增CO2处理的水稻氮素利用率 Table 4 Nitrogen use efficiency of double rice under elevated temperature and CO2 concentration
类别 Type
处理 Treatment
吸收利用率 Nitrogen recovery efficiency (%)
农学利用率 Nitrogen agronomic efficiency (kg kg-1)
生理利用率 Nitrogen physiological efficiency (kg kg-1)
早稻 Early rice
UC
34.8± 2.6 bB
15.3± 1.0 bB
46.4± 3.0 a
CK
33.7± 2.9 bB
14.8± 1.1 bB
45.0± 6.4 a
CT
31.6± 2.4 bB
14.4± 1.0 bB
46.5± 6.0 a
CC
45.7± 1.7 aA
23.1± 0.9 aA
50.7± 2.5 a
CTC
37.7± 1.4 bAB
15.7± 0.9 bB
41.6± 2.4 a
晚稻 Late rice
UC
35.8± 1.9 cC
17.0± 1.0 cC
47.5± 0.5 a
CK
36.5± 1.3 cC
18.4± 1.0 cBC
50.6± 3.3 a
CT
42.3± 0.9 bB
22.6± 1.0 bAB
53.5± 3.1 a
CC
44.7± 1.0 abAB
24.9± 1.4 abA
56.0± 4.1 a
CTC
48.5± 0.9 aA
26.9± 1.2 aA
55.5± 2.3 a
Data in the table are presented as “ mean value ± standard error” . Values within a column followed by different lowercase letters are significant by different at P< 0.05, and those by different capital letters are significant by different at P< 0.01. Abbreviations are the same as those given in Table 2. 表中数值为“ 平均值± 标准误” , 每列中不同小写字母表示处理间差异显著(P< 0.05), 不同大写字母表示处理间差异极显著(P< 0.01)。缩写同表2。
表4 不同增温和增CO2处理的水稻氮素利用率 Table 4 Nitrogen use efficiency of double rice under elevated temperature and CO2 concentration
IPCC. UK: Cambridge University Press, 2014. pp 23-89[本文引用:1]
[2]
IPCC. UK: Cambridge University Press, 2007. pp 80-133[本文引用:1]
[3]
LinE, XiongW, HuiJ, Xu YL, LiY, Bai LP, Xie LY. Climate change impacts on crop yield and quality with CO2 fertilization in China. , 2005, 360: 2149-2154[本文引用:1]
[4]
CalvinK, EdmondsJ, Bond-LambertyB, ClarkeL, Kim SH, KyleP, Smith SJ, ThomsonA, WiseM. 2. 6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. , 2009, 31: S107-S120[本文引用:1]
[5]
熊伟, 居辉, 许吟隆, 林而达. 气候变化对中国农业温度阈值影响研究及其不确定性分析. , 2006, 21: 70-76XiongW, JuH, Xu YL, Lin ED. The threshold of temperature increase due to climate change for Chinese agriculture and its uncertainties. , 2006, 21: 70-76 (in Chinese with English abstract)[本文引用:1][CJCR: 1.16]
[6]
王铮, 朱潜挺, 吴静. 不确定性下的中国减排方案寻优研究. , 2011, 26: 261-270WangZ, Zhu QT, WuJ. Research on China’s emission reduction scheme for searching superiority with uncertainty of climate change. , 2011, 26: 261-270 (in Chinese with English abstract)[本文引用:1][CJCR: 0.918]
Parry ML, RosenzweigC, IglesiasA, LivermoreM, FischerG. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. , 2004, 14: 53-67[本文引用:1][JCR: 6.0]
Peng SB, Huang JL, Zhong XH, Huang JL, Zhong XH, Yang JC, Wang GH, Zou YB, Zhang FS, Zhu QS, BureshR, WittC. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. , 2002, 1: 776-785[本文引用:1][CJCR: 1.019]
[11]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣凤. 中国主要粮食作物肥料利用率现状与提高途径. , 2008, 45: 915-924Zhang FS, Wang JQ, Zhang WF, Cui ZL, Ma WQ, Chen XP, Jiang RF. Nutrient use efficiencies of major cereal crops in China and measures for improvement. , 2008, 45: 915-924 (in Chinese with English abstract)[本文引用:1][CJCR: 1.336]
[12]
Kimball BA, KobayashiK, BindiM. Responses of agricultural crops to free-air CO2 enrichment. , 2002, 77: 293-368[本文引用:2][JCR: 5.021]
[13]
PengS, HuangJ, Sheehy JE, Laza RC, Visperas RM, ZhongX, Centeno GS, Khush GS, Cassman KG. Rice yields decline with higher night temperature from global warming. , 2004, 101: 9971-9975[本文引用:2][JCR: 9.737]
[14]
Baker JT, Allen Jr L H. Contrasting Crop Species Responses to CO2 and Temperature: Rice, Soybean and Citrus. , 1993. pp 239-260[本文引用:1]
[15]
Kim HY, LiefferingM, MiuraS, KobayashiK, OkadaM. Growth and nitrogen uptake of CO2-enriched rice under field conditions. , 2001, 150: 223-229[本文引用:2][JCR: 6.373]
[16]
TashiroT, Wardlaw IF. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. , 1991, 18: 259-265[本文引用:2][JCR: 2.569]
[17]
Kim HY, Lim SS, Kwak JH, Lee DS, Lee SM, Ro HM, Choi WJ. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L. ) exposed to experimental warming with elevated CO2. , 2011, 342: 59-71[本文引用:3][JCR: 3.235]
[18]
Nam HS, Kwak JH, Lim SS, Choi WJ, Lee SI, Lee DS, Lee KS, Kin HY, Lee SM, MatsushimaM. Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO2. , 2013, 369: 563-575[本文引用:2][JCR: 3.235]
[19]
Moya TB, Ziska LH, WeldonC, QuilangJ, JonesP. Microclimate in open-top chambers: Implications for predicting climate change effects on rice production. , 1997, 40: 739-747[本文引用:1]
[20]
Sadras VO, BubnerR, Moran MA. A large-scale, open-top system to increase temperature in realistic vineyard conditions. , 2012, 154: 187-194[本文引用:1]
[21]
万运帆, 游松财, 李玉娥, 王斌, 高清竹, 秦晓波, 刘硕. 开顶式气室原位模拟温度和CO2浓度升高在早稻上的应用效果. , 2014, 30(5): 123-130Wan YF, You SC, Li YE, WangB, Gao QZ, Qin XB, LiuS. Applied effect of improved open-top chamber on simulation in situ of elevating air temperature and CO2 concentration in early rice field. , 2014, 30(5): 123-130 (in Chinese with English abstract)[本文引用:1][CJCR: 2.121]
[22]
韩宝吉, 石磊, 徐芳森, 黄见良, 曾祥明, 马欣, 郭龙飞. 湖北省水稻施肥现状分析及评价. , 2012, 51: 2430-2435Han BJ, ShiL, Xu FS, Huang JL, Zeng XM, MaX, Guo LF. Evaluation and present situation of fertilization for rice in Hubei province. , 2012, 51: 2430-2435 (in Chinese with English abstract)[本文引用:1][CJCR: 0.495]
[23]
王伟妮, 鲁剑巍, 陈防, 鲁明星, 李慧, 李小坤. 湖北省水稻施肥效果及肥料利用效率现状研究. , 2010, 16: 289-295Wang WN, Lu JW, ChenF, Lu MX, LiH, Li XK. Study on fertilization effect and fertilizer use efficiency of rice in Hubei province. , 2010, 16: 289-295 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
[24]
孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. , 2014, 40: 1639-1649Sun YJ, Sun YY, XuH, LiY, Yan FJ, Jiang MJ, MaJ. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. , 2014, 40: 1639-1649 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[25]
万素琴, 陈晨, 刘志雄, 周月华, 邓环, 高素华. 气候变化背景下湖北省水稻高温热害时空分布. , 2009, 30: 316-319Wan SQ, ChenC, Liu ZX, Zhou YH, DengH, Gao SH. Space tome distribution of heat injury on rice in Hubei province under climate change. , 2009, 30: 316-319 (in Chinese with English abstract)[本文引用:1][CJCR: 1.835]
[26]
况慧云, 徐立军, 黄英金. 高温热害对水稻的影响及机制的研究现状与进展. , 2006, 20: 219-222Kuang HY, Xu LJ, Huang YJ. Research advances on the impact and mechanisms of heat victims on rice. , 2006, 20: 219-222 (in Chinese with English abstract)[本文引用:1][CJCR: 1.394]
[27]
苏荣瑞, 耿一风, 田皓, 黄永平, 万素琴, 周守华, 张红燕. 江汉平原58年寒露风对双季晚稻的影响. , 2012, 51: 5020-5023Su RR, Geng YF, TianH, Huang YP, Wan SQ, Zhou SH, Zhang HY. Effect of cold dew wind on double-cropping late rice in recent 58 years in Jianghan Plain. , 2012, 51: 5020-5023 (in Chinese with English abstract)[本文引用:1][CJCR: 0.495]
[28]
Fitter AH, Self GK, WolfendenJ, Van VuurenM, BrownT, WilliamsonL, GravesJ, RobinsonD. Root production and mortality under elevated atmospheric carbon dioxide. , 1995, 187: 299-306[本文引用:1][JCR: 3.235]
[29]
Ziska LH, Manalo PA, Ordonez RA. Intraspecific variation in the response of rice (Oryza sativa L. ) to increased CO2 and temperature: growth and yield response of 17 cultivars. , 1996, 47: 1353-1359[本文引用:1][JCR: 5.794]
[30]
Ma LN, Lü XT, LiuY, Guo JX, Zhang NY, Yang JQ, Wang RZ. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland , northeastern China. , 2011, 6: e27645[本文引用:1][JCR: 3.534]
[31]
SierraJ. Nitrogen mineralization and nitrification in a tropical soil: effects of fluctuating temperature conditions. , 2002, 34: 1219-1226[本文引用:1][JCR: 4.41]
[32]
郑凤英, 彭少麟. 植物生理生态指标对大气CO2浓度倍增响应的整合分析. , 2001, 43: 1101-1109Zheng FY, Peng SL. Meta-analysis of the response of plant ecophysiological variables to doubled atmospheric CO2 concentrations. , 2001, 43: 1101-1109 (in Chinese with English abstract)[本文引用:1][CJCR: 1.143]
[33]
董桂春, 王余龙, 杨洪建, 黄建晔, 朱建国, 杨连新, 单玉华. 开放式空气CO2浓度增高对水稻氮素吸收利用的影响. , 2002, 13: 1219-1222Dong GC, Wang YL, Yang HJ, Huang JY, Zhu JG, Yang LX, Shan YH. Effect of free-air CO2 enrichment (FACE) on nitrogen accumulation and utilization efficiency in rice (Oryza sativa). , 2002, 13: 1219-1222 (in Chinese with English abstract)[本文引用:1][CJCR: 1.904]
[34]
陈春梅, 谢祖彬, 朱建国. 大气CO2浓度升高对土壤碳库的影响. , 2008, 16: 217-222Chen CM, Xie ZB, Zhu JG. Effects of elevated atmospheric CO2 concentration on soil carbon. , 2008, 16: 217-222 (in Chinese with English abstract)[本文引用:1][CJCR: 1.296]
[35]
谢祖彬, 朱建国, 张雅丽, 马红亮, 刘钢, 韩勇, 曾青, 蔡祖聪. 水稻生长及其体内C、N、P组成对开放式空气CO2浓度增高和N, P施肥的响应. , 2002, 13: 1223-1230Xie ZB, Zhu JG, Zhang YL, Ma HL, LiuG, HanY, ZengQ, Cai ZC. Responses of rice (Oryza sativa) growth and its C, N and P composition to FACE (free-air CO2 enrichment) and N, P fertilization. , 2002, 13: 1223-1230 (in Chinese with English abstract)[本文引用:1][CJCR: 1.904]