关键词:大豆; 叶片性状; 叶绿素含量; QTL与环境互作效应; 上位互作效应 Epistatic and QTL × Environment Interaction Effects of QTLs for Leaf Traits and Leaf Chlorophyll Content in Soybean LIANG Hui-Zhen1, YU Yong-Liang1, YANG Hong-Qi1, DONG Wei1, XU Lan-Jie1, NIU Yong-Guang1, ZHANG Hai-Yang1, LIU Xue-Yi2, FANG Xuan-Jun3 1 Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
2 Industrial Crop Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China3Hainan Provincial Institute of Tropical Agriculture Resources, Sanya 572025, China
AbstractAn RIL population containing 447 lines, derived from a cross of cultivar Jingdou 23 × Huibuzhiheidou, as well as their parents were used to analyze inheritance and detect epistatic effects, and QTL × environment (QE) interactions related to leaf traits and leaf chlorophyll content (CC) in soybean using major gene plus polygene mixed inheritance analysis and composite interval mapping (QTL NETwork 2.0). The leaf traits including leaf length (LL), leaf width (LW), leaf stalk length (LSL) were evaluated in 2011, 2012, and 2013, as well as CC was detected on Aug. 1 and Aug. 8, 2012, and on Aug. 2 and Aug. 9, 2013. LL was found to be controlled by two pairs of additive-additive by additive epistatic hybrid main genes, LW was found to be controlled by three pairs of equivalent main genes, LSL was found to be controlled by four pairs of additive-additive by additive epistatic major genes, CC was controlled by four pairs of additive major genes. Ten QTLs for LL, LW, LSL, and CC were mapped on the linkage group (LG) A1, A2, C2, H_1, L, and O, respectively. Of them two QTLs for LL were mapped on LG C2 and LG L, additive by additive epistatic effect and QE interactions. Three QTLs with additive effect and QE interactions associated with LW were mapped on LG A2, C2, and O. Two QTLs for LSL were mapped on LG L and O. Three QTLs for CC were mapped on LG A1, C2, and H_1. The genetic mechanism for leaf traits and leaf chlorophyll content is more complicated containing additive effect, additive × additive epistatic effect and QE interaction. It is important to consider not only to QTLs with major effects, but also to those with epistatic effects in soybean molecular marker-assisted breeding for stability of expression and inheritance of agronomic traits.
Keyword:Soybean; Leaf traits; Leaf chlorophyll content; QTL × environment interactions effects; Epistatic effects Show Figures Show Figures
表3 叶片性状和叶绿素含量之间的简单相关分析 Table 3 Correlation coefficients between leaf traits and chlorophyll content
性状 Trait
叶长 Leaf length
叶宽 Leaf width
叶柄长 Leaf stalk length
叶绿素含量 Chlorophyll content
叶长 Leaflet length
0.69* *
0.59* *
-0.06
叶宽 Leaflet width
0.75* *
0.53* *
-0.12
叶柄长 Leaf stalk length
0.56* *
0.50* *
-0.04
叶绿素含量 Chlorophyll content
-0.15
-0.19*
-0.15
* and * * : significance at the 0.05 and 0.01 levels (2-tailed), respectively. Correlation in 2012 and 2013 are listed in the top right and lower left corners, respectively. * 和* * : 按双侧检验, 分别表示0.05和0.01水平相关性显著和极显著; 右上角数据为2012年分析结果, 左下角数据位2013年分析结果。
表3 叶片性状和叶绿素含量之间的简单相关分析 Table 3 Correlation coefficients between leaf traits and chlorophyll content
表4 Table 4 表4(Table 4)
表4 各性状最适模型及遗传参数估计结果 Table 4 Estimates of genetic parameters of traits
性状 Trait
叶长 Leaf length
叶宽 Leaf width
叶柄长 Leaf stalk length
叶绿素含量 Chlorophyll content
遗传模型Genetic model
MX2-AI-AI
3MG-CEA
4MG-AI
4MG-A
一阶参数 1st order parameter
M
7.073
4.623
8.518
35.824
d(da)
2.599
0.309
3.478
-0.347
db
2.106
0.309
2.093
0.015
dc
—
0.309
-2.471
-0.789
dd
—
—
2.229
1.131
iab(i* )
-1.739
—
2.746
—
iac
—
—
2.568
—
iad
—
—
1.906
—
ibc
—
—
0.514
—
ibd
—
—
-1.146
—
icd
—
—
-0.152
—
iabc
—
—
—
—
二阶参数 2nd order parameter
[d]
—
—
—
—
σ p2
6.782
0.589
44.257
7.027
σ mg2
6.455
0.321
44.089
5.103
σ pg2
—
—
—
—
hmg2(%)
95.18
54.55
99.62
72.62
hpg2(%)
—
—
—
—
表4 各性状最适模型及遗传参数估计结果 Table 4 Estimates of genetic parameters of traits
表6 叶长和叶绿素含量加性× 加性上位互作效应QTL Table 6 Epistatic effect QTLs of additive × additive for leaf length et traits and leaflet chlorophyll content
QTLi
标记区间 Interval
QTLj
标记区间 Interval
上位效应 AAij
贡献率 H2(AAij) (%)
环境互作贡献率 H2(AAEij) (%)
AAEij1
AAEij2
AAEij3
qLL-A2-1
Satt329-Satt377
qLL-D2-1
Satt488-Satt543
-0.4814
10.99
0.05
-0.0001
0.0001
0.0000
qLL-A2-2
Satt327-Satt333
qLL-D2-2
Satt461-Satt301
0.3695
4.68
0.94
0.1060
-0.1091
0.0031
AAEij1, AAEij2, and AAEij3 represent the epistatic effects of QTL × environment interactions in 2011, 2012, and 2013, respectively. AAEij1、AAEij2和AAEij3分别表示2011、2012和2013年的QTL与环境互作的上位效应。
表6 叶长和叶绿素含量加性× 加性上位互作效应QTL Table 6 Epistatic effect QTLs of additive × additive for leaf length et traits and leaflet chlorophyll content
4 结论检测到10个与叶长、叶宽、叶柄长和叶绿素含量相关的QTL, 分别位于A1、A2、C2、H_1、L和O染色体上。叶长受2对混合主基因加性-加性× 加性上位性控制, 叶柄长受4对主基因加性-加性× 加性上位性控制, 其余性状受主基因控制。建议大豆分子标记辅助育种中, 一方面要考虑起主要作用的QTL, 一方面要注重上位性QTL的影响。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
KokubunM. Soybean cultivar difference in leaf photo-synthetic rate and its relation to seed yield. , 1988, 57: 743-748[本文引用:1][JCR: 1.513]
[2]
Donald CM. The breeding of crop ideotypes. , 1968, 17: 385-403[本文引用:1][JCR: 1.643]
[3]
Thompson JA, Nelson RL, Schweitzer LE. Relationships among specific leaf weight, photosynthetic rate and seed yield in soybean. , 1995, 35: 1575-1581[本文引用:1][JCR: 1.513]
[4]
Ma BL, Morrison MJ, Voldeng HD. Leaf greenness and photosynthetic rates in soybean. , 1995, 35: 1411-1414[本文引用:1][JCR: 1.513]
[5]
SecorJ, McCarty D R, Shibles R, Green D E. Variability and selection for leaf photosynthesis in advanced generation of soybean. , 1982, 22: 255-259[本文引用:1][JCR: 1.513]
Buttery BR, Buzzell RI, Findlay WI. Relationship among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. , 1981, 61: 191-198[本文引用:1][JCR: 0.716]
[8]
李仕贵, 何平, 王玉平, 黎汉云, 陈英, 周开达, 朱立煌. 水稻剑叶性状的遗传分析和基因定位. , 2000, 26: 261-265Li SG, HeP, Wang YP, Li HY, ChenY, Zhou KD, Zhu LH. Genetic analysis and gene mapping of the leaf traits in rice (Oryza sativa L. ). , 2000, 26: 261-265 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[9]
刘进, 姚晓云, 李清, 张宇, 任春元, 王嘉宇, 徐正进. 水稻叶片性状QTL分析. , 2012, 27(5): 86-90LiuJ, Yao XY, LiQ, ZhangY, Ren CY, Wang JY, Xu ZJ. QTL analysis for the leaf traits in rice. , 2012, 27(5): 86-90 (in Chinese with English abstract)[本文引用:1][CJCR: 0.951]
[10]
Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). , 2000, 43: 461-469[本文引用:1][JCR: 1.668]
[11]
赵慧, 张正斌, 徐萍. 小麦叶片水分利用效率生理性状遗传相关分析. , 2006, 39: 1796-1803ZhaoH, Zhang ZB, XuP. Genetic correlation analysis between leaf water use efficiency and relevant physiological traits in wheat. , 2006, 39: 1796-1803 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[12]
ThisD, BorriesC, SouyrisI, TeulatB. QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. , 2000, 30: 20-23[本文引用:1]
[13]
Chen QS, Zhang ZC, Liu CY, Xin DW, Qiu HM, Shan DP, Shan CY, Hu GH. QTL analysis of major agronomic traits in soybean. , 2007, 6: 399-405[本文引用:3][CJCR: 1.0251]
[14]
Kim HK, Kang ST, Suh DY. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. , 2005, 124: 582-589[本文引用:4][JCR: 1.175]
[15]
仕相林, 孙亚男, 王家麟, 刘春燕, 陈庆山, 胡国华. 大豆叶片性状QTL的定位及Meta分析. , 2012, 38: 256-263Shi XL, Sun YN, Wang JL, Liu CY, Chen QS, Hu GH. Mapping and meta-analysis of QTLs for leaf traits in soybean. , 2012, 38: 256-263 (in Chinese with English abstract)[本文引用:4][CJCR: 1.667]
[16]
李广军, 李河南, 程利国, 章元明. 大豆叶绿素含量动态表达的QTL分析. , 2010, 36: 242-248Li GJ, Li HN, Cheng LG, Zhang YM. QTL analysis for dynamic expression of chlorophyll content in soybean. , 2010, 36: 242-248 (in Chinese with English abstract)[本文引用:5][CJCR: 1.667]
[17]
崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. , 2007, 33: 744-750Cui SY, Yu DY. QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean [Glycine max (L. ) Merr. ]. , 2007, 33: 744-750 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[18]
LinS, CianzioS, ShoemakerR. Mapping genetic loci for iron deficiency chlorosis in soybean. , 1997, 3: 219-229[本文引用:1][JCR: 3.251]
[19]
Kato KK, Palmer RG. Duplicate chlorophyll-deficient loci in soybean. , 2004, 47: 190-198[本文引用:1][JCR: 1.668]
[20]
王珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析. 广西大学硕士学位论文, , 2004WangZ. Construction of Soybean SSR Based Map and QTL Analysis Important Agronomic Traits. MS Thesis of Guangxi University, Nanning, , 2004 (in Chinese with English abstract)[本文引用:2]
[21]
梁慧珍. 大豆子粒性状的遗传及QTL分析. 西北农林科技大学博士学位论文, , 2006Liang HZ. Genetic Analysis and QTL Mapping of Seed Traits in Soybean [Glycine max (L. ) Merr]. PhD Dessertation of Northwest A&F University, Yangling, , 2006 (in Chinese with English abstract)[本文引用:2]
[22]
DarvasiA, WeinrebA, MinkeV, WeHer J I, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. , 1993, 134: 943-951[本文引用:1][JCR: 4.389]
[23]
Tang QY, Zhang CX. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. 2012, doi: DOI:10.1111/j.1744-7917.2012.01519.x[本文引用:1]
[24]
盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003Gai JY, Zhang YM, Wang JK. Beijing: Science Press, 2003 (in Chinese)[本文引用:1]
[25]
YangJ, ZhuJ. Predicting superior genotypes in multiple environments based on QTL effects. , 2005, 110: 1268-1274[本文引用:1][JCR: 3.658]
[26]
McCouch SR, Cho YG, YanoM, PaulE, BlinstrubM, MorishimaH, KinoshitaT. Report on QTL nomenclature. , 1997, 14: 11-14[本文引用:1]
[27]
XiaoJ, LiJ, YuanL, Tanksley SD. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. , 1996, 92: 230-244[本文引用:1][JCR: 3.658]
[28]
Liang HZ, Yu YL, Yang HQ, Xu LJ, DongW, DuH, Cui WW, Zhang HY. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. , 2014, 127: 2127-2137[本文引用:1][JCR: 3.658]
[29]
HittalmaniS, HuangN, CourtoisB, VenuprasadR, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu JS, SrivantaneeyakulS, Singh VP, Bagali PG, Prasanna HC, McLaren G, Khush G S. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. , 2003, 107: 679-690[本文引用:1][JCR: 3.658]
[30]
伍宝朵, 陈海峰, 郭丹丹, 沙爱华, 单志慧, 张晓娟, 杨中路, 邱德珍, 陈水莲, 朱晓玲, 张婵娟, 周蓉, 周新安. 大豆种质资源叶型和荚粒性状的关系及与SSR标记的关联分析. , 2012, 38: 1196-1204Wu BD, Chen HF, Guo DD, Sha AH, Shan ZH, Zhang XJ, Yang ZL, Qiu DZ, Chen SL, Zhu XL, Zhang CJ, ZhouR, Zhou XA. Relationship of leaflet shape, pod traits and association with SSR markers in soybean germplasm. , 2012, 38: 1196-1204 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[31]
Orf JH, ChaseK, JarvikT, Mansur LM, Cregan PB, Adler FR, Lark KG. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. , 1999, 39: 1642-1651[本文引用:3][JCR: 1.513]
[32]
PorterC. Inheritance of the Gene(s) Controlling Leaflet Shape in Soybean. , 2000[本文引用:1]
[33]
Weiss MG. Genetic linkage in soybeans: linkage group IV. , 1970, 10: 368-370[本文引用:1][JCR: 1.513]
[34]
Bernard RL. Two genes affecting stem termination in soybeans, , 1972, 12: 235-239[本文引用:1][JCR: 1.513]
[35]
Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, DelannayX, Specht JE, Cregan PB. A new integrated genetic linkage map of the soybean. , 2004, 109: 122-128[本文引用:1][JCR: 3.658]
[36]
Jansen RC, Van Ooijien J M, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. , 1995, 91: 33-37[本文引用:1][JCR: 3.658]
[37]
SabouriH. QTL detection of rice grain quality traits by microsatellite markers using an indica rice (Oryza sativa L. ) combination. , 2009, 88: 81-85[本文引用:1][JCR: 0.876]
[38]
Su CC, Cheng XN, Zhai HQ, Wan JM. Detection and analysis of QTL for resistance to the brown planthopper, Nilaparvata lugens (Stal), in rice (Oryza sativa L. ), using backcross inbred lines. , 2002, 29: 332-338[本文引用:1]
[39]
Beaver JS, Osorno JM. Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. , 2009, 168: 145-175[本文引用:2][JCR: 1.643]
[40]
FanizzaG, Gatta CD, BagnuloC. A non-destructive determination of leaf chlorophyll in Vitis vinifera. , 1991, 119: 203-209[本文引用:1][JCR: 2.147]
[41]
Ma LQ, Zhou EF, Huo NX, Zhou RH, Wang GY, Jia JZ. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L. ). , 2007, 153: 109-117[本文引用:1][JCR: 1.643]
[42]
Mansur LM, Orf JH, ChaseK, JarvikT, Cregan PB, Lark KG. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. , 1996, 36: 1327-1336[本文引用:1][JCR: 1.513]
[43]
Mansur LM, Lark KG, KrossH, OliveiraA. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L. ). , 1993, 86: 907-913[本文引用:1][JCR: 3.658]
[44]
王金社, 李海旺, 赵团结, 盖钧镒. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. , 2010, 36: 191-201Wang JS, Li HW, Zhao TJ, Gai JY. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. , 2010, 36: 191-201 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[45]
Hagiwara WE, OnishK, TakamureI, SanoY. Transgressive segregation due to linked QTLs for grain characteristics of rice. , 2006, 150: 27-35[本文引用:1][JCR: 1.643]
[46]
Zhang ZH, Yu SB, YuT, HuangZ, Zhu YG. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L. ). , 2005, 91: 161-170[本文引用:1][JCR: 2.474]
[47]
RongwenJ, Akkaya MS, Bhagwat AA, LaviU, Cregan PB. The Use of microsatellite DNA markers for soybean genotype identification. , 1995, 90: 43-48[本文引用:1][JCR: 3.658]
王金陵. 东北地区大豆株型的演变. , 1996, (1): 5-7Wang JL. The development of soybean plant type in northeast China. , 1996, (1): 5-7 (in Chinese)[本文引用:1][CJCR: 0.4815]
[50]
杜维广, 王育民, 谭克辉. 大豆品种( 系)间光合活性的差异及与产量的关系. , 1982, 8: 131-134Du WG, Wang YM, Tan KH. Varietal difference in photosynthetic activity of soybean and its relation to yield. , 1982, 8: 131-134 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[51]
梁建秋, 张明荣, 吴海英. 大豆抗旱性研究进展. , 2010, 29: 341-346Liang JQ, Zhang MR, Wu HY. Advances in drought tolerance of soybean. , 2010, 29: 341-346 (in Chinese with English abstract)[本文引用:1][CJCR: 0.886]
[52]
林汉明, 常汝镇, 邵桂花. 中国大豆耐逆研究. 北京: 中国农业出版社, 2009Lam HM, Chang RZ, Shao GH. Beijing: China Agriculture Press, 2009 (in Chinese)[本文引用:2]
[53]
张振宇. 干旱条件下大豆叶片性状分析. , 2011, (11): 18-19Zhang ZY. Soybean leaf traits under drought analysis. , 2011, (11): 18-19 (in Chinese with English abstract)[本文引用:1][CJCR: 0.3268]