删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

栽培种花生遗传图谱的构建及主茎高和总分枝数QTL分析

本站小编 Free考研考试/2021-12-26

成良强, 唐梅, 任小平, 黄莉, 陈伟刚, 李振动, 周小静, 陈玉宁, 廖伯寿, 姜慧芳*
中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室, 湖北武汉430062
* 通讯作者(Corresponding author): 姜慧芳, E-mail:peanut@oilcrops.com, Tel: 027-86711550 第一作者联系方式: E-mail: chengliangmei1984@126.com, Tel: 13971402933
收稿日期:2014-10-27 接受日期:2015-03-19网络出版日期:2015-04-07基金:本研究由国家重点基础研究发展计划(973计划)项目(2011CB109300), 国家自然科学基金项目(31271764, 31371662), 农业部农作物种质资源保护项目(NB2010-2130135-28B), 国家现代农业产业技术体系建设专项(CARS-14-种质资源评价)和山东省农业良种工程(鲁科字[2013]207号)项目资助

摘要栽培种花生是异源四倍体, 基因组大, 构建花生的分子遗传连锁图谱并对相关性状进行QTL定位研究的工作缓慢。本研究以遗传差异大的亲本组配杂交组合富川大花生×ICG6375构建F2作图群体, 采用公开发表的2653对SSR引物, 构建了一张含有234个SSR标记、分布于20个连锁群的栽培种花生遗传图谱。该图谱覆盖基因组的长度为1683.43 cM, 各个连锁群长度在36.11~131.48 cM之间, 每个连锁群的标记数在6~15个之间, 标记间的平均距离为7.19 cM。结合F3在湖北武汉和阳逻环境下的主茎高和总分枝数鉴定结果, 应用WinQTLCart 2.5软件采用复合区间作图法进行了QTL定位和遗传效应分析。共检测到17个与主茎高和总分枝数相关的QTL位点, 贡献率在0.10%~10.22%之间, 分布于8个连锁群上。综合分析武汉和阳逻环境的鉴定结果, 获得重复一致的与主茎高相关的6个QTL, 其中 qMHA061.1 qMHA062.1位于连锁群LG06上TC1A2~AHGS0153标记区间, 贡献率为5.49%~8.95%; qMHA061.2 qMHA062.2位于LG06上AHGS1375~PM377标记区间, 贡献率为2.93%~5.83%; qMHA092.2 qMHA091.1位于连锁群LG09上GM2839~EM87标记区间, 贡献率为0.53%~9.43%。

关键词:栽培种花生; 遗传图谱; 主茎高; 总分枝数; QTL
Construction of Genetic Map and QTL Analysis for Mainstem Height and Total Branch Number in Peanut ( Arachis hypogaeaL.)
CHENG Liang-Qiang, TANG Mei, REN Xiao-Ping, HUANG Li, CHEN Wei-Gang, LI Zhen-Dong, ZHOU Xiao-Jing, CHEN Yu-Ning, LIAO Bo-Shou, JIANG Hui-Fang*
Oil Crops research institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China

AbstractPeanut is an allotetraploid crop with a large genome. The construction of genetic linkage map and QTL mapping of related traits has little progress for peanut. In the present study, a genetic map consisting of 20 linkage groups was constructed with 234 SSR markers based on 2653 published SSR markers by using the F2population derived from the cross between Fuchuan Dahuasheng and ICG6375. The genetic map covers 1683.43 cM, and the length of each linkage group varies from 36.11 to 131.48 cM, the number of markers in each linkage group varies from 6 to 15, with an average distance of 7.19 cM. Combining with the data of main stem height and number of total branches of F3 population in the environments of Wuhan and Yangluo, we performed QTL mapping and genetic effects analysis of QTLs by software WinQTLCart 2.5 using CIM (Composite Interval Mapping) method. As a result, 17 QTLs related to main stem height and number of total branches on eight linkage groups were detected with contribution percentage of 0.10%-10.22%. Comparing the QTLs detected in the environments of Wuhan and Yangluo, qMHA061.1 and qMHA062.1were in the same linkage region of markers TC1A2-AHGS0153 of linkage group LG06 with contribution percentage of 5.49%-8.95%, qMHA061.2 and qMHA062.2were between the markers AHGS1375 and PM377 on linkage group LG06 with contribution ratio of 2.93%-5.83%, qMHA092.2 and qMHA091.1 were in the same linkage region of the markers GM2839-EM87 in linkage group LG09 with contribution percentage of 0.53%-9.43%. The QTLs repeatedly detected are important for molecular breeding of peanut.

Keyword:Cultivated peanut; Genetic mapping; Mainstem height; Number of total branches; QTL
Show Figures
Show Figures




引言分子遗传图谱广泛应用于基因定位、图位克隆以及分子标记辅助育种。栽培种花生(Arachis hypogaea L.)为异源四倍体(2n=40), 因富含脂肪、蛋白质、白藜芦醇等营养保健成分而深受人们的喜爱, 是我国第二大油料作物[1, 2]。在早期的研究中, 由于栽培种花生的DNA多态性相对较为贫乏, 而野生花生的多态性丰富, 因此, 早期的花生遗传图谱的构建多以野生花生为材料[3, 4, 5, 6]。随着SSR标记的大量开发, 近十多年来的研究结果显示, 栽培种花生中也存在较为丰富的遗传多态性。栽培种花生的遗传图谱的构建不断完善, 重要性状QTL的研究报道不断增多。Varshney等[7]以栽培种花生的RIL群体为材料, 构建了1个包含135个SSR标记的连锁图, 定位了4个与抗干旱相关的QTL。Ravi等[8]在Varshney构建遗传连锁图谱的基础上增加了56个标记, 构建了包含191个标记的图谱, 定位了13个与干旱抗性成分相关的QTL。Khedikar等[9]利用栽培种花生的RIL群体构建了一张含有56个SSR标记涉及14个连锁群的遗传图谱, 定位到与抗锈病相关的11个分子标记。Shirasawa等[10]构建了一张含有1114个位点的栽培种花生遗传图谱, 获得了与开花期、分枝角度、主茎高、荚果长、荚果厚和荚果宽相关的QTL共9个。Wang等[11]利用栽培种花生的F2群体构建了一张包含318个标记的遗传图谱, 定位到15个与番茄斑萎病毒(TSWV)相关的QTL, 37个与叶斑病相关的QTL。张新友等[12]运用栽培种RIL群体和F2群体定位了与产量和品质性状相关的QTL 62个。综合分析栽培种花生遗传图谱和QTL的研究结果发现, 花生遗传图谱的构建还很不完善, 缺乏高密度的遗传图谱。花生的主茎高和总分枝数是重要的农艺性状, 很多研究结果都表明, 主茎高和总分枝数与产量性状之间存在显著的相关性[13, 14], 而且主茎高还与植株的抗倒伏性相关。本文以花生的主茎高和总分枝数为调查性状, 采用2个环境下的数据, 拟构建一张遗传图谱, 这对花生的分子设计育种具有重要意义。
1 材料与方法1.1 试验材料根据核心种质的遗传多样性鉴定结果, 选择遗传差异较大的地方龙生型品种富川大花生为母本、从ICRISAT引进的珍珠豆型材料ICG 6375为父本配制杂交组合, 构建218个F2单株和218个F3家系的检测群体。
1.2 主茎高和总分枝考察2012年将F2材料种植于湖北武汉中国农业科学院油料作物研究所试验农场, 单株收获。2013年将上年收获的每个单株材料的种子分成两等份, 分别在武汉中国农业科学院油料作物研究所试验农场和武汉阳逻基地种植成F3株系。单粒播种, 每行12株, 行长2.0 m, 种植密度为0.4 m× 0.2 m, 常规田间管理。收获时去掉每个株行的边株, 收获中间10株, 按《花生种质资源描述规范和数据标准》[15]考察主茎高和总分枝数。
1.3 DNA提取及PCR扩增选取幼嫩叶片, 采用改良CTAB法提取DNA, 用1%的琼脂糖凝胶电泳检测DNA浓度与纯度。所用引物序列来源于参考文献[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]。PCR体系为10 μ L, 含10 mmol L-1Tris-HCl (pH 8.3)、50 mmol L-1KCl、300~400 μ mol L-1 dNTPs、10~40 pmol L-1引物对、10~20 ng模板DNA。PCR程序为Touchdown, 扩增条件为94℃预变性3 min; 93℃变性30 s, 65℃退火30 s (每个循环-1℃), 72℃延伸1 min, 共10个循环; 93℃变性30 s, 55℃退火30 s, 72℃延伸1 min, 共20个循环; 72℃延伸10 min。PCR产物经6%变性聚丙烯酰胺凝胶电泳检测, 硝酸银染色, 显影, 扫描保存。
1.4 分子标记数据统计统计每份材料扩增的条带, 与母本相同的带型记为“ 1” , 与父本相同的带型记为“ 2” , 同时具有亲本带型的记为“ 3” , 缺失或者不清的带型记为“ 0” 。
1.5 遗传图谱构建及QTL定位运用JoinMap 3.0构建遗传图谱, 首先采用New Project构建新的工作文件夹, 对options内的参数进行设置, 设置LOD≥ 3, 步长设置为0.05; 选择右边的LOD grouping (tree)等选项; 选择population内的create groups for mapping, 即得相应连锁群。连锁分群时应用WinQTLCart2.5复合区间作图法进行QTL定位, 以LOD值≥ 2.5作为检测标准。QTL的命名以性状加所在连锁群加年份命令, 若同一连锁群上出现2个或以上QTL时, 则QTL后面加“ .” 表示, 比如qMHA061.2表示位于LG06连锁群在第1个环境下即武汉环境下检测到的第2个与主茎高相关的QTL。

2 结果与分析2.1 SSR多态性利用已经公开发表的图谱上公布的SSR和EST-SSR引物[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]共2653对在双亲(富川大花生和ICG6375)中进行筛选, 获得多态性引物275对(表1), 占8.52%。将获得的多态性引物在F2代群体的218个单株中检测, 共检测到281个位点, 多态率为8.71%。其中AHGS1314、AHGS1470、AHGS1672、AHGS2429、TC6E1和GNB533等6对引物均扩增出了2个位点。
通过统计F2代群体各单株的带型, 在检测到的281个位点中, 符合孟德尔分离比例的标记共137个, 占48.76%。
2.2 遗传图谱构建根据F2代群体中检测得到的281个多态性标记, 运用JoinMap 3.0软件进行遗传连锁分析, 获得包含20个连锁群的连锁图(图1), 各连锁群的信息列于表2。在281个多态性标记中, 有234个标记进入连锁群, 47个标记未进入连锁群。构建的图谱总长度为1683.43 cM, 连锁群长度在36.11~131.48 cM之间, 平均每个连锁群长度为84.17 cM; 每个连锁群的标记数在6~15个之间, 平均为11.7个; 相邻两两标记间的平均距离为7.19 cM, 图谱上偏分离标记共116个, 占49.57%。分析各连锁群的长度, 最长的为LG06, 达131.48 cM; 最短的为LG14, 仅36.11 cM。共有9个连锁群的长度> 84.17 cM, 包括LG01、LG09、LG10等, 其余11个连锁群的长度< 84.17 cM。比较分析各连锁群上的标记数, 发现除LG08和LG14这2个连锁群较少外(分别为6个和7个), 其余18个连锁群相对较多, 在9~15个之间。
表2结果还表明, 图谱上的相邻两两标记间的距离不同。相邻两两标记之间的距离≤ 10 cM的有162个, 占69.23%。相邻标记之间距离最小为1.61 cM, 位于LG06连锁群上的GM623与AHGS0153之间; 距离最大为 32.7 cM, 位于同一连锁群(LG06)上的AHGS1512与pPGPseq15D3之间。图谱上偏分离标记分布也不均匀。LG15连锁群上偏分离标记最多, 11个标记发生了偏分离, 占连锁群上标记数目的84.62%。LG04和LG18连锁群上的偏分离标记最少, 均只有2个标记发生了偏分离, 分别占22.22%和20%。
表1
Table 1
表1(Table 1)
表1 引物多态性比例 Table 1 Percentage of polymorphic primers tested
标记类型
Marker type
引物对数
Primer
多态性引物
Polymorphic primers
多态性位点
Polymorphic locus
多态率
Polymorphism rate (%)
SSR250126327711.07
EST-SSR7261240.55
总计 Total32272752818.71

表1 引物多态性比例 Table 1 Percentage of polymorphic primers tested

2.3 表型性状的变异通过对亲本和218个F3家系的主茎高和总分枝数在武汉和阳逻环境下的鉴定, 获得的结果列于表3。从表3看出, 2个亲本在2种环境下的差异为20 cm左右, 总分枝数相差12条左右。武汉环境下F3的平均主茎高56.27 cm, 变异范围31.50~87.50 cm; 总分枝数17.66条, 变异范围4.00~61.00条; 主茎高和总分枝数的最高值与最低值间的差异均超出了双亲之间的差异。阳逻环境下F3的平均主茎高54.30 cm, 变异范围31.00~86.00 cm; 总分枝数18.04条, 变异范围4.30~55.40条; 阳逻环境下的主茎高和总分枝数的最高值与最低值间的差异也均超出了双亲之间的差异。统计分析不同主茎高范围的家系数和不同分枝数范围的家系数, 获得的分布图列于图2。从图2看出, 两种环境下的主茎高分布基本一致, 符合正态分布; 总分枝数的分布也基本一致, 呈偏正态分布。
表2
Table 2
表2(Table 2)
表2 本研究开发的连锁群信息 Table 2 Information of the linkage groups developed in the present study
连锁群
Linkage group
长度
Length (cM)
标记数目
No. of markers
标记间平均距离
Average distance (cM)
偏分离标记
Disorted primers
LG0192.85156.639
LG0274.87108.328
LG0371.72135.986
LG0474.4499.312
LG0580.21146.176
LG06131.481310.967
LG0770.32135.8610
LG0871.75614.354
LG09100.16129.114
LG10113.42148.724
LG1178.25127.115
LG1294.06128.554
LG1389.73137.486
LG1436.1176.023
LG15104.90138.7411
LG1662.50125.687
LG1774.9899.374
LG1869.91107.772
LG1985.29127.754
LG20106.50157.6110
总计1683.432347.19116

表2 本研究开发的连锁群信息 Table 2 Information of the linkage groups developed in the present study

图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 花生遗传连锁图谱武汉环境下主茎高QTL; 武汉环境下总分枝数QTL; 阳逻环境下主茎高QTL; 阳逻环境下总分枝数QTL。Fig. 1 Peanut genetic linkage mapQTLs related to mainstem Height in Wuhan; QTLs related to number of total branches in Wuhan; QTLs related to main stem height in Yangluo; QTLs related to number of total branches in Yangluo.

亲本以及后代群体性状变异
Variation of parents and populations traits
环境
Env
性状
Trait
ICG 6375 (父本)富川大花生
Fuchuan
Dahuasheng (母本)
最大值
Max.
最小值
Min.
平均值
Mean
标准差
SD
偏度
Kurt
峰度
Skew
变异系数
CV (%)
武汉
Wuhan
主茎高 Main stem height65.4083.6087.5031.5056.279.620.400.4617.10
总分枝数
Number of total branches
11.3023.2061.004.0017.668.651.323.7748.98
阳逻
Yangluo
主茎高 Main stem height62.4089.3086.0031.0054.3011.440.27-0.4421.06
总分枝数
Number of total branches
10.8026.6055.404.3018.049.391.061.1452.07
武汉和阳逻环境下后代群体主茎高和总分枝数频次分布图
Common markers of the linkage groups developed from the present study and by Shirasawa (2013)
本研究构建
的连锁群
Linkage group from the study
Shirasawa (2013)
整合的连锁群
Linkage group by Shirasawa (2013)
共有标记数
No. of common markers
本研究构建的连锁群
Linkage group
from the study
Shirasawa (2013)
整合的连锁群
Linkage group by Shirasawa (2013)
共有标记数
No. of common markers
LG01A017LG11B0110
LG02A025LG12B028
LG03A038LG13B039
LG04A046LG14B046
LG05A057LG15B0511
LG06A069LG16B0610
LG07A0710LG17B074
LG08A084LG18B088
LG09A098LG19B0910
LG10A109LG20B1013

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]廖伯寿. 我国花生科研与产业发展现状及对策. 中国农业信息, 2008, (5): 18-20
Liao B S. Development status and strategies of peanut research and industry development status. China Agric Inform, 2008, (5): 18-20 (in Chinese)[本文引用:1][CJCR: 0.1192]
[2]王后苗, 黄家权, 雷永, 晏立英, 王圣玉, 姜慧芳, 任小平, 娄庆仁, 廖伯寿. 花生种子白藜芦醇含量与黄曲霉产毒抗性的关系. 作物学报, 2012, 38: 1875-1883
Wang H M, Huang J Q, Lei Y, Yan L Y, Wang S Y, Jiang H F, Ren X P, Lou Q R, Liao B S. Relationship of resveratrol content and resistance to aflatoxin accumulation caused by Aspergillus flavus in peanut seeds. Acta Agron Sin, 2012, 38: 1875-1883 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[3]Halward T, Stalker H. T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379-384[本文引用:1][JCR: 3.658]
[4]Milla S, Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1-11[本文引用:1][JCR: 1.668]
[5]Moretzsohn M C, Leoi L K, Proite P, Guimaraes M, Leal-Bertioli S C M, Valls J F M, Grattapaglia D. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060-1071[本文引用:2][JCR: 3.658]
[6]Foncéka D, Hodo-Abalo T, Ronan R, Mbaye N S, Ousmane N. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol, 2009, 9: 130[本文引用:1][JCR: 4.354]
[7]Varshney R, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L. ). Theor Appl Genet, 2009, 118: 729-739[本文引用:2][JCR: 3.658]
[8]Ravi K, Vadez V, Zsobe S, Mir R R, Guo Y, Nigam S N, Growda M V C, Radhalrishncm T, Bertioli D J, Knapp S J, Varshney R V. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L. ). Theor Appl Genet, 2011, 122: 1119-1132[本文引用:1][JCR: 3.658]
[9]Khedikar Y, Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R. K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L. ). Theor Appl Genet, 2010, 121: 971-984[本文引用:1][JCR: 3.658]
[10]Shirasawa K, Koilkonda P, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80[本文引用:1][JCR: 4.354]
[11]Wang H, Pand ey M K, Qiao L X, Qin H D, Culbreath A K, He G H, Varshney R K, Guo B Z. Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L. ). Plant Genome, 2013, 6: 1-28[本文引用:3][JCR: 2.463]
[12]张新友. 栽培花生产量品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2010. pp 76-77
Zhang X Y. Inheritance of Main Traits Related to Yield Quality And Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L. ). PhD Dissertation of Zhejiang University, Hangzhou, China, 2010. pp 76-77 (in Chinese with English abstract)[本文引用:1]
[13]赖明芳, 曾彦, 漆燕, 夏友霖, 崔富华. 花生主要农艺性状的配合力分析. 中国油料作物学报, 2007, 29: 148-151
Lai M F, Zeng Y, Qi Y, Xia Y L, Cui F H. Analysis on the genetic characteristics of major economic traits in peanut. Chin J Crop Sci, 2007, 29: 148-151 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[14]殷冬梅, 尚明照, 崔党群. 花生主要农艺性状的遗传模型分析. 中国农学通报, 2006, 22(7): 261-265
Yin D M, Shang M Z, Cui D Q. Studies on genetic analysis of major agronomic characters in peanut. Chin Agric Sci Bull, 2006, 22(7): 261-265 (in Chinese with English abstract)[本文引用:1]
[15]姜慧芳, 段迺雄, 任小平. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65-66
Jiang H F, Duan N X, Ren X P. Descriptors and Data Stand ard for Peanut (Arachis spp. ). Beijing: China Agriculture Publishers, 2006. pp 65-66[本文引用:1]
[16]Hong Y B, Chen X P, Liang X Q, Liang X Q, Liu H Y, Zhou G Y, Li S X, Wen S J, Horbrook C C, Guo B Z. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L. ) genome. BMC Plant Biol, 2010, 10: 17[本文引用:1][JCR: 4.354]
[17]Qin H D, Feng S P, Chen C, Guo Y F, Knapp S, Culbreath A, He G H, Wang M L, Zhang X Y, Horlbrook C C, Ozias-Akins P, Guo B Z. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L. ) constructed from two RIL populations. Theor Appl Genet, 2012, 124: 653-664[本文引用:2][JCR: 3.658]
[18]Hopkins M S A, Casa A M, Wang T, Mitchell S E. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci, 1999, 39: 1243-1247[本文引用:1][JCR: 1.513]
[19]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L. ). Theor Appl Genet, 2004, 108: 1064-1070[本文引用:2][JCR: 3.658]
[20]Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes, 2005, 5: 77-79[本文引用:2][JCR: 2.384]
[21]Palmieri D A, Hoshino A A, Bravo J P, Lopes C R, Gimenes M A. Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus, Arachis). Mol Ecol Notes, 2002, 2: 551-553[本文引用:2][JCR: 2.384]
[22]He G H, Meng R H, Newman M, Cao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L. ). BMC Plant Biol, 2003, 3: 3[本文引用:2][JCR: 4.354]
[23]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F M, Ferreira M F. Genetic diversity of peanut (Arachis hypogaea L. ) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11[本文引用:2][JCR: 4.354]
[24]Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee K D. Generation of expressed sequence tag (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci, 2005, 45: 346-353[本文引用:2][JCR: 1.513]
[25]Mace E S, Varshney R K, Mahalakshmi V. In silico development of simple sequence repeat markers within the aeschynomenoid, dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea, groundnut. Plant Sci, 2007, 174: 51-60[本文引用:2][JCR: 2.922]
[26]Proite K, Leal-Bertioli S C, Bertioli D J. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol, 2007, 7: 7[本文引用:2][JCR: 4.354]
[27]Gimenes M A, Hosino A A, Barbosa A A G, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of cultivated peanut (Arachis hypogaea L. ). BMC Plant Biol, 2007, 7: 9[本文引用:2][JCR: 4.354]
[28]Wang C T, Yang X D, Chen D Y, Yu L S, Liu G Z, Tang Y Y, Xu J Z. Isolation of simple sequence repeats from groundnut. Electr J Biotech, 2007, 10: 473-480[本文引用:2]
[29]Cuc L M, Mace E S, Grouch J H, Quang V D, Long T D, Varshney R K. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L. ). BMC Plant Biol, 2008, 8: 55[本文引用:2][JCR: 4.354]
[30]Guo B Z, Chen X P, Hong Y B, Liang X Q, Dang P, Brenneman T, Holbrook C, Culbreath A. Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Intl J Plant Genom, 2009, doi: DOI:10.1155/2009/715605[本文引用:2]
[31]Nagy E, Chu Y, Guo Y F, Khananl S, Tang S S, Li Y, Dong W B, Timer P, Taylor C, Ozias-Akins P, Holbrook C C, Beilinson V, Nielsen N C, Stalker H T, Knapp S J. Recombination is suppressed in an alien introgression in peanut harbouring Rma, a dominant root-knot nematode resistance gene. Mol Breed, 2010, 26: 357-370[本文引用:2][JCR: 3.251]
[32]Gautami B, Ravi K, M L, Narasu M L, Hoisington D A, Varshney R K. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. Int J Integr Biol, 2009, 7: 100-106[本文引用:2]
[33]Pand ey M K, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya H D, Gowda M V C, Radhakrishan T, Bertioli D J, Knapp S J, Cook D R, Knapp S J, Cook D R, Varshney R K. Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breed, 2011, 131: 139-147[本文引用:2][JCR: 1.175]
[34]洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395-402
Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S J. Construction of genetic linkage map in peanut (Arachis hypogaea L. ) cultivars. Acta Agron Sin, 2009, 35: 395-402 (in Chinese with English abstract)[本文引用:3][CJCR: 1.667]
[35]Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C, Thudi M, Pand ey M K, Rami J F, Foncéka D, Gowda M V, Qin H D, Guo B Z, Hong Y B, Liang X Q, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173-184[本文引用:3][JCR: 4.425]
[36]Xu Y, Zhu L, Xiao J, Huang N, McMouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid and recombinant inbred populations in rice (Oryza sativa L. ). Mol Gen Genet, 1997, 253: 535-545[本文引用:2]
[37]Zhao B, Deng Q M, Zhang Q J, Li J Q, Ye S P, Liang Y S, Peng Y, Li P. Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genet Sin, 2006, 33: 449-457[本文引用:2]
相关话题/遗传 环境 材料 资源 鉴定