删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选

本站小编 Free考研考试/2021-12-26

王嘉*, 荆凌云*, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊*
西南大学农学与生物科技学院, 重庆 400715
*通讯作者(Corres ponding author): 刘列钊, E-mail: liezhao2003@126.com. Tel: 023-68250701 第一作者联系方式: E-mail: wangjia0724@126.com **同等贡献(Contributed equally to this work)
收稿日期:2014-11-25 接受日期:2015-04-02网络出版日期:2015-04-14基金:本研究由国家自然科学基金项目(31371655)资助

摘要株高、分枝数及第1分枝高是油菜重要的农艺性状。本研究利用甘蓝型油菜GH06和P174杂交, F2通过单粒法连续自交至F11构建重组自交系群体, 利用油菜60K芯片对该群体进行基因分型, 构建高密度遗传连锁图谱。结果表明, 该图谱包含2795个SNP多态性标记位点, 总长1832.9 cM, 相邻标记间平均距离为0.66 cM。在此图谱基础上采用复合区间作图法(CIM), 检测到3个农艺性状的24个QTL。其中11个株高QTL分别位于A01、A06、A07、A08、A10和C06染色体, 单个QTL解释5.00%~15.26%的表型变异; 7个第1分枝高QTL分别位于A06、C05和C06染色体, 单个QTL解释5.04%~12.99%的表型变异; 6个分枝数QTL分别位于A03、A07、C01、C04和C06染色体, 单个QTL解释5.95%~8.14%的表型变异。将156个拟南芥株高相关基因、10个拟南芥第1分枝高相关基因和148个拟南芥分枝数相关基因与QTL对应置信区间序列进行同源比较分析(E<1E-20), 分别找出了20个株高候选基因、3个第1分枝高候选基因以及12个分枝数候选基因。2个环境中在A07染色体上重复检测到的QTL置信区间检测到与株高相关的候选基因 ATGID1B/GID1B WRI1, A08染色体上重复检测到的QTL置信区间检测到 SLR/IAA14 AXR2/IAA72个与株高相关的候选基因。在具有部分置信区间重叠的 q2013FBH-C05-1 q2014FBH-C05-2区间均检测到第1分枝高候选基因 PHT1;8, 在A03和C06染色体上的QTL置信区间内, 分别检测到4个分枝数候选基因, 匹配E值介于0~3E-56之间。

关键词:甘蓝型油菜; 单核苷酸多态性; 数量性状位点; 株高; 第1分枝高度; 分枝数
Quantitative Trait Loci Mapping for Plant Height, the First Branch Height, and Branch Number and Possible Candidate Genes Screening in Brassica napusL .
WANG Jia**, JING Ling-Yun**, JIAN Hong-Ju, QU Cun-Min, CHEN Li, LI Jia-Na, LIU Lie-Zhao*
College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China

AbstractPlant height, the first branch height and branch number are important agronomic traits in rapeseed. In our study, QTL mapping of plant height, the first branch height and branch number in Brassica napus was tested by using the high density SNP genetic map constructed from the high generation RIL population with the rapeseed 60K chip array. The reference SNP genetic map contains 2795 SNP markers, covering 1832.9 cM with an average distance of 0.66 cM in B. napus genome. Totally, 24 putative QTLs were identified for plant height, the first branch height and branch number by using the complex interval mapping. The phenotypic variation was explained by individual QTL ranged from 5.00% to 15.26% for 11 QTLs of plant height, from 5.04% to 12.99% for seven QTLs of the first branch height, and from 5.95% to 8.14% for six QTLs of branch number. We collected 156 genes associated with plant height, 10 genes associated with the first branch height and 148 genes associated with branch number in Arabidopsis thalianaand searched the homology region of the QTL confidence interval E-value<1E-20 to screen the possible candidate genes. We found 20 genes associated with plant height, three genes associated with the first branch height and 12 genes associated with branch number. The plant height candidate genes ATGID1B/GID1B and WRI1 were found in QTL confidence interval on A07 and SLR/IAA14 and AXR2/IAA7 were found in QTL confidence interval on A08 in 2013 and 2014. The first branch height candidate gene PHT1;8 was found in QTLs q2013FBH-C05-1 and q2014FBH-C05-2 that had an overlapping confidence interval. Moreover, we found four genes associated with branch number that E-value from 0 to 3E-56 on A03 and C06, respectively.

Keyword: Brassica napus; SNP; QTL; Plant height; The first branch height; Branch number
Show Figures
Show Figures






油菜(Brassica napusL.)属于十字花科芸薹属, 为世界四大油料作物之一, 菜籽是仅次于大豆的第二大植物油来源[1]。影响油菜产量的农艺性状主要有株高、有效分枝数、分枝部位以及开花时间等。由于油菜农艺性状大多为数量性状, 由微效多基因控制, 表现连续变异, 受环境的影响较大, 不能依照质量性状的处理方法将单个基因的效应区分开, 因此单独依靠传统育种方法和技术在现有基础上研究尚未有大的突破[2]
DNA分子标记和QTL作图等生物技术的发展为复杂的数量性状的研究提供便利。Li等[3]利用SRAP、SSR、AFLP标记以及功能标记对甘蓝型油菜F2群体在2个环境下同时进行了QTL定位, 检测到12个与一次有效分枝数相关的QTL, 单个QTL能够解释5.47%~27.39%的表型变异。Chen等[4]利用甘蓝型油菜2个群体(DH和IF2)定位了6个分枝数QTL, 其中位于13连锁群上的42.0~55.6 cM的QTL有较大的效应。易斌等[2]利用RFLP、RAPD、SSR以及SRAP等分子标记技术共检测到与油菜产量及其相关性状有关的QTL 17个。其中与株高相关的3个分别位于第4、第9和第10连锁群上, 对性状的解释率为9.42%~17.58%; 与分枝部位有关的4个分别位于第4、第6和第7连锁群上, 其中Bp1Bp2均位于第4连锁群, 对性状的解释率为8.13%~ 15.20%; 与一次有效分枝有关的2个分别位于第1、第4连锁群上, 对性状的解释率为15.29%~19.58%。张倩[5]利用SSR标记检测到4个与株高相关的QTL, 分别位于LG1、LG2连锁群上, 可解释表型变异的8.54%~17.04%; 与分枝高度相关的5个, 分别位于LG3、LG5、LG8连锁群上, 可解释表型变异的3.92%~11.82%; 与分枝数相关的1个, 位于LG3连锁群上, 可解释表型变异的11.08%。Zhang等[6]利用复合区间作图法, 在第4和第21连锁群上共检测到3个与株高相关的QTL, 每个QTL分别解释28.60%、23.85%和11.11%的表型变异; 在第11、第13、第20和第21连锁群上共检测到4个与分枝高度相关的QTL, 单个QTL能解释8.54%~54.59%的表型变异。
SNP (single nucleotide polymorphism)是基于基因组核苷酸水平上单碱基插入、缺失、转换和颠换引起的多态性差异而开发的DNA标记[7]。随着甘蓝型油菜全基因组测序的完成[8]以及高通量SNP芯片技术的完善和成本的下降, SNP芯片技术将成为油菜遗传研究的热点之一。本研究利用油菜60K芯片构建的高密度SNP遗传连锁图谱, 对株高、第1分枝高和分枝数进行QTL定位分析, 利用甘蓝型油菜基因组数据库序列, 根据QTL区间物理位置及拟南芥基因组数据库信息筛选可能的候选基因。尽可能将数量性状定位结果明确在特定的物理位置甚至候选基因, 有利于不同材料之间定位结果的比较分析及候选基因的克隆分析。
1 材料与方法1.1 试验材料以甘蓝型黄籽油菜GH06作母本, 甘蓝型黑籽型双低油菜P174作父本配制杂交组合, F2通过单粒法再连续自交至F11构建的重组自交系群体, 随机选取其中的172个材料进行SNP标记分析, 构建高密度SNP遗传连锁图谱。所有材料均由重庆市油菜工程技术研究中心提供。
1.2 田间试验2012年9月至2013年5月(性状统计记录为2013)与2013年9月至2014年5月(性状统计记录为2014)将亲本及重组自交系群体种植于重庆市北碚区歇马镇油菜基地。随机区组设计3个重复, 每个小区2行, 每行10株。行距0.40 m, 株距0.24 m。田间管理同常规生产, 确保所有样本的外部生长环境一致, 待成熟后进行数据统计。
1.3 性状考察油菜成熟后, 每个株系随机选取5株测量株高、第1分枝高(有效分枝)、分枝数, 取平均值。株高为从地面到植株最高部位的距离(cm); 第1分枝高为地面到第1有效分枝的高度(cm); 分枝数为该植株所有有效的一次分枝数。
1.4 遗传连锁图谱构建及QTL分析本高密度SNP遗传图谱包含2795个SNP多态性标记位点, 图谱总长1832.9 cM, 相邻标记间平均距离为0.66 cM [9]。采用QTL分析软件Windows QTL Cartographer 2.5[10]及复合区间作图(composite interval mapping, CIM)法对该群体的株高、第1分枝高、分枝数进行QTL定位及效应检测[11]。CIM分析时, 选取1 cM的步长(walking speed), 按照假定检测10和Zmapqtl模型6, 选取参数为1000次回归, 显著水平为0.01。LOD≥ 3.0时, 即认为该区间可能存在一个QTL。运行软件后可同时给出各QTL的加性效应和解释的表型变异。按照McCouch等[12]的方法对检测到的QTL命名, 以“ q” 加上性状再加染色体编号表示, 字体为斜体。同一性状在染色体相同的位置检测重复的QTL, 且加性效应方向一致, 认为是同一QTL。
1.5 候选基因筛选为了筛选出与株高、第1分枝高及分枝数相关的候选基因, 以检测到的QTL置信区间在甘蓝型油菜基因组[8]上查询对应的序列, 然后与Shi等[13]和Ding等[14]搜索出的156个拟南芥株高相关基因、148个分枝数相关基因, Shi等[15]检测到的10个第1分枝高相关基因进行BlastN, 将E值设定为E-20, 最后筛选出每个QTL置信区间内匹配E值小于阈值的株高、第1分枝高及分枝数基因。

2 结果与分析2.1 不同年份的表型分析如表1图1所示, RIL群体中株高、第1分枝高和分枝数在2年的均值差异都较小, 表明其是多位点控制的典型数量性状, 且位点间加性效应在同一亲本中具有不同的方向。各性状在RIL群体中均呈连续分布和双向超亲分离, 表明这些性状均为多基因控制的数量性状, 其偏斜度和峰值均小1, 适合于QTL分析。
相关分析表明(表2), 同一性状在2013年和2014年表现均呈极显著正相关, 且相关系数较大, 说明株高、第1分枝高和分枝数性状遗传稳定。性状间的相关分析还表明, 在2个生长周期里, 第1分枝高和株高呈极显著正相关, 相关系数分别为0.468和0.451; 分枝数与株高呈显著负相关或未达到显著水平。同时第1分枝高和分枝数在2年里均呈极显著负相关, 相关系数分别为-0.590和-0.475。
2.2 株高、第1分枝高及分枝数在2年的QTL分析利用软件Windows QTL Cartographer 2.5对2年的株高、第1分枝高、分枝数进行QTL分析, 共检测到24个QTL (表3图2)。其中11个株高QTL, 阈值3.02~7.51, 单个QTL解释的表型变异为5.00%~15.26%。在2年内检测到对株高有显著效应的共同QTL位点(q2013PH-A07q2014PH-A07-1q2013PH-A08q2014PH-A08), 分别位于A07和A08染色体上, 加性效应值均为负, 说明增效基因来自父本P174, 在C06染色体上两年内也检测到一个具有重叠置信区间的QTL (q2013PH-C06q2014PH- C06), 加性效应值大于0, 说明增效基因来自母本GH06。对于第1分枝高在2年内检测到7个QTL, 阈值为3.54~5.89, 单个QTL解释的表型变异为5.04%~ 12.99%, 分别位于C05、C06和A06染色体上。对于分枝数在2年内共检测到6个QTL, 阈值为3.20~4.54, 单个QTL解释的表型变异为5.95%~8.14%。
表1
Table 1
表1(Table 1)
表1 亲本及重组自交系群体3个农艺性状在2年的表型分析 Table 1 Analysis of three agronomic traits in the two parents and RIL population in 2013 and 2014
年份和性状
Year and trait
亲本ParentRIL群体RIL population
GH06
(cm)
P174
(cm)
范围
Range (cm)
均值
Mean (cm)
方差
Variance
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
2013PH233.5218.5178-271226.91412.1220.320.09-0.08-0.56
2014PH236.0215.2164-266227.79320.0417.890.08-0.12-0.38
2013FBH53.887.425-17484.56880.6729.670.35-0.270.16
2014FBH70.592.126-15284.03483.6121.990.26-0.05-0.06
2013BN10.09.04-138.283.330.140.220.42-0.07
2014BN9.08.33-118.341.841.360.160.39-0.41
PH: 株高; FBH: 第1分枝高; BN: 分枝数。PH: plant height; FBH: the first branch height; BN: branch number.

表1 亲本及重组自交系群体3个农艺性状在2年的表型分析 Table 1 Analysis of three agronomic traits in the two parents and RIL population in 2013 and 2014

表2
Table 2
表2(Table 2)
表2 甘蓝型油菜重组自交系群体农艺性状在2013年和2014年的相关性分析 Table 2 Correlation analysis for agronomic traits from B. napus RIL population in 2013 and 2014
2013PH2014PH2013FBH2014FBH2013BN
2014PH0.878* *
2013FBH0.468* * 0.447* *
2014FBH0.440* * 0.451* * 0.843* *
2013BN-0.180* -0.107-0.590* * -0.456* *
2014BN-0.066-0.010-0.403* * -0.475* * 0.810* *
PH: plant height; FBH: the first branch height; BN: branch number. * * and* denote significant correlation at the 0.01 and 0.05 probability levels, respectively.
PH: 株高; FBH: 第1分枝高; BN: 分枝数。* * * 分别代表在0.01和0.05显著水平。

表2 甘蓝型油菜重组自交系群体农艺性状在2013年和2014年的相关性分析 Table 2 Correlation analysis for agronomic traits from B. napus RIL population in 2013 and 2014

图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 甘蓝型油菜重组自交系群体株高、第1分枝高和分枝数在2013年和2014年的频率分布Fig. 1 Frequency distribution of plant height, the first branch height, and branch number from B. napus RIL population in 2013 and 2014


2.3 候选基因筛选本研究将24个QTL置信区间序列与156个株高基因、10个第1分枝高基因和148个分枝数基因分别进行比对, 其中有11个与株高相关的QTL共检测到20个候选基因, 匹配E值介于0~9E-24之间, 2个与第1分枝高相关的QTL共检测到3个候选基因, 5个与分株数相关的QTL共检测到12个候选基因, 匹配E值介于0~3E-56之间。其中在q2013PH-A06q2013PH-A10置信区间内分别筛出3个株高候选基因, q2013PH-A07、q2013PH-A08、q2014PH-A01、q2014PH-A07-1q2014PH-A08以及q2014PH-C06置信区间内分别筛出2个株高基因。株高基因IAA14/ SLRIAA7/AXR2在2年重复检测到的QTL (q2013PH-A08q2014PH-A08)区间内均检测到, 在2年内具有重叠置信区间的QTLq2014PH- A07-1q2013PH-A07区间内均检测到株高基因ATGID1B/ GID1BWRI1。第1分枝高候选基因PHT1; 8在具有部分置信区间重叠的QTL q2013FBH-C05-1q2014FBH-C05-2中均检测到, q2013BN-A03q2014BN-C06区间内分别检测到4个分枝数候选基因。比对结果列于表4, 候选基因的功能列于表5

3 讨论油菜的农艺性状主要包括株高、有效分枝数、第1分枝高度、千粒重、开花时间、主花序长、有效角果总数、果长、每果粒数等。株高作为一个重要的性状受到了育种家的重视, 这不仅因为株高在油菜产量形成过程中具有重要的间接支配作用, 而且株高直接影响能否有效机械收割。分枝不仅是油菜角果的重要载体, 还影响其形态建成, 对油菜产量具有十分重要的作用。一次有效分枝数作为角果数的重要载体, 对油菜产量起着重要的作用, 在一定范围内增加油菜分枝数可以显著增加全株角果数, 进而提高单株产量[44, 45]。对于油菜农艺性状与产量的关系分析, 已有大量报道, 虽然结果不尽一致, 但普遍认同单株角果数与分枝数对产量的贡献最大[46, 47, 48, 49]
对油菜株高、第1分枝高以及分枝数的遗传分析大多停留在经典数量遗传学研究方面, 对油菜分枝数等农艺性状的遗传机制了解较少[50]。相对于其他作物, 甘蓝型油菜农艺性状QTL定位研究开展比较晚, 而且到目前为止, 只报道了为数不多的农艺性状QTL定位研究和少量的QTL[51, 52, 53, 54, 55], 而且定位结果不尽一致, 这也从侧面表明油菜农艺性状的复杂性。因此, 研究株高、第1分枝高及分枝数具有重要的现实意义。利用高密度SNP遗传图谱已经对甘蓝型油菜的种皮纤维素[9]、种子硫苷含量[56]及盐、旱胁迫下种子发芽率[57]进行了准确定位。本研究利用高密度SNP遗传图谱对甘蓝型油菜株高、第1分枝高及分枝数进行QTL分析, 均在同一标记区间或紧邻的染色体区域内重复检测到一个或多个QTL, 但其效应值均较小, 没有主效基因。
表3
Table 3
表3(Table 3)
表3 利用复合区间作图法检测到的株高(PH)、第1分枝高(FBH)和分枝数(BN)在2个环境中的QTL Table 3 Putative QTL detected by composite interval mapping for plant height (PH), the first branch height (FBH), and branch number (BN) in two environments
性状
Trait
数量性状座位
QTL
染色体
Chromosome
标记区间
Position
置信区间
Confidence interval
LOD加性效应
Additive
贡献率
R2(%)
PHq2013PH-A06A0622.01SNP14242A06-SNP14309A063.685.105.86
q2013PH-A07A0761.51SNP15557A07-SNP15554A075.49-6.7710.47
q2013PH-A08A0875.21SNP17561A08-SNP19318A085.61-6.038.53
q2013PH-A10A1040.61SNP22138A10-SNP22091A103.095.165.21
q2013PH-C06C0647.21SNP41759C06-SNP367969.768.1315.56
q2014PH-A01A0156.11SNP2507A01-SNP2403A013.02-4.275.18
q2014PH-A06A0658.71SNP14986A06-SNP12820A063.144.305.27
q2014PH-A07-2A0771.31SNP15747A07-SNP15778A073.11-4.145.00
q2014PH-A07-1A0761.51SNP15557A07-SNP15554A076.12-6.6212.80
q2014PH-A08A0875.21SNP17561A08-SNP19318A084.86-4.837.05
q2014PH-C06C0648.91SNP36829-SNP368127.515.8710.15
FBHq2013FBH-C05-2C0572.91SNP37857-SNP42376C054.667.355.66
q2013FBH-C05-1C0562.71SNP28959C05-SNP44638C053.558.296.92
q2013FBH-C06-2C0656.81SNP24413C06-SNP24466C063.548.737.58
q2013FBH-C06-1C0649.21SNP36829-SNP368275.8911.4112.99
q2014FBH-A06A068.91SNP13071A06-SNP13385A064.005.195.04
q2014FBH-C05-2C0566.11SNP47509C05-SNP44638C054.575.846.31
q2014FBH-C05-1C0558.71SNP39974C05-SNP281973.696.367.45
BNq2013BN-A03A0322.41SNP6539A03-SNP6422A034.54-0.547.67
q2013BN-C06C0636.91SNP29430C06-SNP29760C063.59-0.476.04
q2014BN-A07A0724.31SNP7695A03-SNP17501A073.48-0.356.13
q2014BN-C01C0119.01SNP46967C01-SNP34335C014.090.468.41
q2014BN-C04C0459.21SNP34444-SNP262973.590.356.37
q2014BN-C06C0628.11SNP29459-SNP29410C063.20-0.335.95

表3 利用复合区间作图法检测到的株高(PH)、第1分枝高(FBH)和分枝数(BN)在2个环境中的QTL Table 3 Putative QTL detected by composite interval mapping for plant height (PH), the first branch height (FBH), and branch number (BN) in two environments

Wei等[58]利用258个DH株系以SSR和SRAP标记技术共检测到20个与株高相关的QTL, 分布在N3、N10、N13、N16和N17连锁群上, 单个QTL解释6.2%~ 12.0%的表型变异; 检测到10个与第1分枝高相关的QTL, 分布于N2、N8、N16和N17连锁群上, 单个QTL解释4.3%~16.2%的表型变异。本研究除在普遍检测到株高QTL的染色体A07、A08和C06上[13, 14, 15, 59, 60, 61]检测到株高相关的QTL外, 还在A01和A10染色体上各检测到1个株高QTL; 在A06、C05及C06染色体上检测到7个与第1分枝高相关的QTL; 在A03和C06染色体上检测到的分枝数QTL与前人研究结果[3, 4, 13, 14, 15, 59, 60, 61]一致, 另外在A07、C01及C04染色体上检测到3个与分枝数相关的QTL, 单个QTL解释的表型变异为6.13%~ 8.14%。
Tuberosa等[62]认为性状相关表现在QTL分析结果上, 可能存在控制不同性状QTL之间的紧密连锁或同一QTL位点控制不同的性状现象即一因多效。本研究中, 在C06染色体上检测到6个与株高、第1分枝高及分枝数相关的QTL, 其中q2013PH-C06q2013FBH-C06-1的区域紧密连锁, 佐证了株高与第1分枝高呈极显著正相关。而位于C06染色体上控制株高和分枝数的QTL增效基因相反, 印证了株高与分枝数呈显著负相关。前人对油菜的株高、第1分枝高和分枝数等农艺性状的QTL定位结果不尽一致, 这是由于这些性状由微效多基因控制, 受环境影响较大, 因此筛选出控制这些农艺性状的候选基因显得极有意义。Shi等[15]在低磷和最佳施磷量条件下, 用30个GBM标记在检测到的QTL的置信区间发现19个候选基因。其中在缺磷和最适条件下均在A09染色体上的QTL置信区间检测到1个控制株高的候选基因(LPR1), 分别在A01和A06染色体上的QTL置信区域检测到与分枝数有关的候选基因PAP17FBHLH32PHT1; 8, 在A01、A02、A03、A04、A09和C07染色体上的QTL区域共检测到10个与第1分枝高相关的候选基因。Ding等[14]在70个QTL置信区域内检测到136个与甘蓝型油菜农艺性状相关的候选基因, 其中46个与株高相关, 30个为分枝数的候选基因, 此结果与Shi等[15]搜索的部分结果一致。本研究利用Shi等[13]、Ding等[14]和Shi等[15]搜索或检测到的相关候选基因与本文检测到的QTL置信区间序列进行同源比对, 检测到20个株高候选基因、3个第1分枝高候选基因和12个分枝数候选基因。2个环境中在A07染色体上重复检测到的QTL置信区间检测到与株高相关的候选基因ATGID1B/GID1BWRI1, A08染色体上重复检测到的QTL置信区间检测到SLR/IAA14AXR2/IAA72个与株高相关的候选基因。在具有部分置信区间重叠的QTL q2013FBH- C05-1q2014FBH-C05-2区间均检测到第1分枝高候选基因PHT1; 8, 与Shi等[15]检测到该基因的位置(A01和A06染色体上)存在差异。在位于前人检测到分枝数QTL的A03和C06染色体上[3, 4, 13, 14, 15, 59, 60, 61]的QTL置信区间内, 我们分别检测到4个分枝数候选基因, 匹配E值介于0~3E-56之间, 暗示这两个QTL极有可能为控制分枝数的遗传位点, 其结果有待进一步验证。检测到株高、第1分枝高及分枝数的候选基因较少, 可能与QTL的贡献率小有关, 检测到第1分枝高相关候选基因较少的原因还可能是在本研究中用于搜索的第1分枝高相关基因较少。
图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 甘蓝型油菜株高、第1分枝高及分枝数QTL在SNP连锁群上分布图Fig. 2 Putative QTL locations of plant height, the first branch height, and branch number on the SNP genetic map

表4
Table 4
表4(Table 4)
表4 甘蓝型油菜基因组中QTL置信区间候选基因与拟南芥相关基因的比对 Table 4 Alignment of candidate genes in QTL confidence interval in B. napuswith the related genes in Arabidopsis thaliana
性状
Trait
数量性状座位
QTL
拟南芥相关基因
Related genes in A. thaliana
名称
Name
物理区间
Physical interval
预测基因
Gene prediction
基因名
Gene name
登录号
Accessions number
E值
E-value
PHq2013PH-A062371514-3103568BnaA06g37850DPIF3AT1G095306E-63
q2013PH-A062371514-3103568BnaA06g05470DPHYAAT1G095700
q2013PH-A062371514-3103568BnaA06g03910DGCR1AT1G482701E-53
q2013PH-A0713870810-15602504BnaA07g19530DATGID1B/ GID1BAT3G630100
q2013PH-A0713870810-15602504BnaA07g16350DWRI1AT3G543204E-46
q2013PH-A085330869-5684994BnaA08g05350DIAA14/SLRAT4G145501E-63
q2013PH-A085330869-5684994BnaA08g05350DIAA7/AXR2AT3G230509E-24
q2013PH-A1012371885-12610538BnaA10g17240DRGL3AT5G174900
q2013PH-A1012371885-12610538BnaA10g16550DATAPY2/APY2AT5G182808E-87
q2013PH-A1012371885-12610538BnaA10g16110DBUD2/SAMDC4AT5G189300
q2013PH-C0621465525-24243988BnaC06g19100DLUE1AT1G803501E-100
q2014PH-A016898804-8402453BnaA01g15540DGAMT1AT4G264206E-80
q2014PH-A016898804-8402453BnaA01g16300DWES1AT4G272600
q2014PH-A065330869-5684994BnaA06g00360DDEK1AT1G553500
q2014PH-A07-216688281-16912983BnaA07g21900DBZR1AT1G750800
q2014PH-A07-113870810-15602504BnaA07g19530DATGID1B/GID1BAT3G630100
q2014PH-A07-113870810-15602504BnaA07g16350DWRI1AT3G543204E-46
q2014PH-A085330869-5684994BnaA08g05350DIAA14/SLRAT4G145501E-63
q2014PH-A085330869-5684994BnaA08g05350DIAA7/AXR2AT3G230509E-24
q2014PH-C0632013794-33834232BnaC06g34300DT9L24.44AT1G733402E-98
q2014PH-C0632013794-33834232BnaC06g32200DLPR2AT1G710400
FBHq2013FBH-C05-18025904-12092352BnaC05g16120DPHT1; 8AT1G208600
q2014FBH-C05-29283565-12092352BnaC05g16120DPHT1; 8AT1G208600
q2014FBH-C05-29283565-12092352BnaC05g18410DLPR1AT1G230100
BNq2013BN-A0319776618-24907552BnaA03g48550DWES1AT4G272600
q2013BN-A0319776618-24907552BnaA03g39630DTGHAT5G230801E-157
q2013BN-A0319776618-24907552BnaA03g39870DTCP5AT5G609700
q2013BN-A0319776618-24907552BnaA03g43080DHAT1, HAT2AT5G473703E-56
q2014BN-A0710780228-11403972BnaA07g11660DARF5/IAA24AT1G198505E-70
q2014BN-A0710780228-11403972BnaA07g12710DSHIAT5G66350E-119
q2014BN-C0124141843-26227700BnaC01g26840DAXR4AT1G549900
q2014BN-C0434037875-38776266BnaC04g32260DERA1AT5G402802E-65
q2014BN-C0630464787-32535173BnaC06g29550DBRC2, TCP12AT1G688007E-66
q2014BN-C0630464787-32535173BnaC06g29980DAP1, AGL7AT1G691206E-88
q2014BN-C0630464787-32535173BnaC06g31070DPP2AAT1G699601E-148
q2014BN-C0630464787-32535173BnaC06g32240DAT1G71090AT1G710900

表4 甘蓝型油菜基因组中QTL置信区间候选基因与拟南芥相关基因的比对 Table 4 Alignment of candidate genes in QTL confidence interval in B. napuswith the related genes in Arabidopsis thaliana

表5
Table 5
表5(Table 5)
表5 拟南芥中株高(PH)、第1分枝高(FBH)和分枝数(BN)候选基因功能 Table 5 Functions of candidate genes related to plant height (PH), the first branch height (FBH), and branch number (BN) in A. thaliana
性状
Trait
基因
Gene
基因功能
Gene function
参考文献
Reference
PHPIF3与启动子LHYCCA1的G-box形成三元复合物, 是植酸酶B信号转导的负调控子。
Forms a ternary complex with G-box element of the promoters of LHY, CCA1.
Acts as a negative regulator of phyB signaling.
Sentandreu et al.[16]
PHYA红色或远红光受体活性, 光反应的信号转导途径。
Red or far-red light photoreceptor activity, signal transducer activity response to light.
Oka et al.[17]
GCR1类似G蛋白偶联受体, 表达下调导致细胞分裂素敏感性降低。
Encodes a protein similar to G-coupled receptor, reduction of expression results in
decreased sensitivity to cytokinin.
Chen et al.[18]
GID1B编码一个可溶的赤霉素受体, 介导植株中GA 的信号传导, 影响植株的株高。
Encodes a soluble GA receptor, mediates signal transduction of GA in plants, affects
the plant height.
Iuchi et al.[19]
IAA14/SLR参与侧根发育, 突变降低生长素诱导的基因表达。
Involved in lateral root development. Function mutation decreases auxin-inducible
gene expression.
Muto et al.[20]
IAA7/AXR2控制幼苗向地生长和向光生长。
Control of gravitropic growth and development in light-grown seedlings.
Muto et al.[20]
RGL3DELLA蛋白家族成员, 参与GA信号转导。
DELLA subfamily member involved in GA signal transduction.
Feng et al.[21]
ATAPY2/APY2利用ATP酶和ADP酶活性编码的一种酶。
Encodes an enzyme with ATPase and ADPase activity.
Chiu et al.[22]
BUD2/SAMDC4类似SAMDC的腺苷甲硫氨酸脱羧酶。
Adenosylmethionine decarboxylase; similar to SAMDC.
Cui et al.[23]
LUE1突变体中赤霉素异常表达。
GA abnormal expression in mutant.
Stoppin et al.[24]
GAMT1编码赤霉素甲基转移酶催化的赤霉素甲基化过程。
Encodes gibberellin methyltransferase catalyze a process of gibberellin methylation);
Varbanova et al.[25]
WES1编码IAA酰胺合酶, 调控生长素自由态向结合态转化。
Encodes an IAA-amido synthase, regulating from auxin free state to combine state
transformation.
Park et al.[26]
DEK1玉米胚乳糊粉层细胞的发育基因, 编码蛋白酶基因超家族的膜蛋白。
A gene encoding a membrane protein of the calpain gene superfamily required for
aleurone cell development in the endosperm of maize grains.
Liang et al.[27]
BZR1油菜素内酯信号通路中的关键转录因子, 调控下游响应基因的表达。
Encodes a positive regulator of the brassinosteroid (BR) signalling pathway that
mediates both downstream BR responses.
Wang et al.[28]
WRI1编码AP2转录因子, 在种子成熟时通过LEC2启动子来调节脂肪酸积累。
Encoding AP2 transcription factor, regulating fatty acid accumulation by LEC2
promoter during seed maturation.
Kim et al.[29]
T9L24.44参与植物的细胞伸长和分裂, 对植物生长发育起至关重要的作用。
Involved in plant cell elongation and cell division, play a vital role in plants growth
and development.
Theologis et al.[30]
LPR2参与调控低磷胁迫下植物初生根的发育。
Involved in the regulation of plant primary roots development under low phosphorus stress.
Wang et al.[31]

表5 拟南芥中株高(PH)、第1分枝高(FBH)和分枝数(BN)候选基因功能 Table 5 Functions of candidate genes related to plant height (PH), the first branch height (FBH), and branch number (BN) in A. thaliana

Table 5
Table 5
Table 5 (续表5)
性状
Trait
基因
Gene
基因功能
Gene function
参考文献
Reference
FBHPHT1; 8编码的磷酸盐转运蛋白ORYsa, 提高了植株磷素吸收能力。
Improve the plant ability of phosphorus absorption by codes phosphate transporter ORYsa.
Remy et al.[32]
LPR1参与调控生长素响应低磷胁迫。
Involved in the regulation of auxin response to low phosphorus stress.
Wang et al.[31]
BNTGH甘油三酯水解酶, 突变体出现发育缺陷, 包括植株矮化, 畸形和导管减少。
Triglyceride hydrolase, Mutants display developmental defects, including reduced
plant height, polycotyly, and reduced vascularization.
Calderon et al.[33]
TCP5调控植物特异的形态建成。
Regulation of plant specific morphogenesis.
Efroni et al.[34]
HAT2在茎和根组织中调控生长素形态扮演一个相反的角色。
Plays opposite roles in the shoot and root tissues in regulating auxin-mediated
morphogenesis.
Roig et al.[35]
ARF5/IAA24编码一种转录因子(IAA24)介导胚胎轴的形成和微管的发育。
Encodes a transcription factor (IAA24) mediating embryo axis formation and vascular
development.
Wu et al.[36]
SHI参与赤霉素响应。
Involved in the response to gibberellic acid.
Kuusk et al.[37]
AXR4响应机械刺激和生长素刺激, 生长素的极性运输。
Response to mechanical stimulus, response to auxin stimulus, auxin polar transport.
Dharmasiri et al.[38]
ERA1基因缺失或抑制表达可以提高植株抗旱能力。
Involved in meristem organization and ABA-mediated signal transduction pathway,
and response to abscisic acid and drought.
Yalovsky et al.[39]
BRC2/TCP12编码一个TCP转录因子, 抑制腋芽的发育与生长。
Encodes a TCP transcription factor, arrests axillary bud development and prevents
axillary bud outgrowth.
Aguilar et al.[40]
AP1/AGL7调控花序分生组织向花分生组织的转变, 调控花器官形态发育。
Regulation of transformation that inflorescence meristem into a floral meristem, and
floral organogenesis.
Yalovsky et al.[41]
PP2A参与生长素极性运输。
Involved in auxin polar transport.
Gao et al.[42]
AT1G71090参与生长素的极性运输和跨膜运输。
Involved in auxin polar transport and transmembrane transport.
Barbez et al.[43]

Table 5 (续表5)

4 结论同一环境下株高与第1分枝高呈极显著相关, 与分枝数呈负相关, 第1分枝高与分枝数在2个环境中均呈极显著负相关。在2个环境下重复检测到3个与株高相关的QTL, 分别位于A07、A08和C06染色体上, 在A07染色体上重复检测到的QTL置信区间检测到2个与株高相关的候选基因ATGID1B/GID1BWRI1, 在A08染色体上的QTL置信区间检测到3个与株高相关的候选基因(SLR/ IAA14AXR2/IAA7BIN2/DWF12); 第1分枝高、分枝数各重复检测到1个QTL, 分别位于C05和C06染色体上。位于A03和C06染色体上的QTL q2013BN-A03q2014BN-C06分别检测到4个分枝数候选基因, 极有可能为控制分枝数的遗传位点。
The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]James C. Global review of commercialized transgenic crops. Curr Sci, 2003, 84: 303-309[本文引用:1][JCR: 0.905]
[2]易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32: 676-682
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006, 32: 676-682 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[3]Li W, Lin Z X, Zhang X L. A novel segregation distortion in intraspecific population of Asian cotton (Gossypium arboretum L. ) detected by molecular markers. J Genet Genomics, 2007, 34: 634-640[本文引用:3][JCR: 2.076][CJCR: 1.323]
[4]Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858[本文引用:3][JCR: 3.658]
[5]张倩. 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位. 西南大学硕士学位论文, 重庆, 2013
Zhang Q. Genetic Effects Analysis and QTL Mapping of Major Plant-type Traits in Brassica napus L. PhD Dissertation of Southwest University, Chingqing, China, 2013 (in Chinese with English abstract)[本文引用:1]
[6]Zhang S H, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z, Jiang Y Z. QTL mapping and epistasis analysis for plant height and height to the first branch in rapeseed (Brassica napus L. ). BIOTECHNOLOGY: Gene Clon Funct Anal, 2007, 2: 232-235[本文引用:1]
[7]Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghand our G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Land er E S. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082[本文引用:1]
[8]Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953[本文引用:2]
[9]Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He H J, Snowdon R, Li J. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013, 8: e83052[本文引用:2][JCR: 3.73]
[10]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer. Ver. 2. 5 [computer program] department of statistics, North Carolina State University, Raleigh, NC, 2006. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm[本文引用:1]
[11]Land er E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199[本文引用:1][JCR: 4.389]
[12]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14[本文引用:1]
[13]Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C, Nancroft I, Zhao J Y, Meng J L. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182: 851-861[本文引用:5][JCR: 4.389]
[14]Ding G D, Zhao Z K, Liao Y, Hu Y F, Shi L, Long Y, Xu F S. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot, 2012, 109: 747-759[本文引用:6][JCR: 0.657]
[15]Shi T X, Li R Y, Zhao Z K, Ding G D, Long Y, Meng J L, Xu F S, Shi L. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLOS One, 2013, 8: e54559[本文引用:8][JCR: 3.73]
[16]Sentand reu M, Martín G, González-Schain N, Leivar P, Soy J, Tepperman J M, Quail P H, Monte E. Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in Arabidopsis. Plant Cell, 2011, 23: 3974-3991[本文引用:1][JCR: 9.251]
[17]Oka Y, Ono Y, Toledo-Ortiz G, Kokaji K, Matsui M, Mochizuki N, Nagatani A. Arabidopsis phytochrome a is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. Plant Cell, 2012, 24: 2949-2962[本文引用:1][JCR: 9.251]
[18]Chen J G, Pand ey S, Huang J, Alonso J M, Ecker J R, Assmann S M, Jones A M. GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol, 2004, 135: 907-915[本文引用:1][JCR: 6.555]
[19]Iuchi S, Suzuki H, Kim Y C, Iuchi A, Kuromori T, Ueguchi- Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J, 2007, 50: 958-966[本文引用:1][JCR: 6.582]
[20]Muto H, Watahiki M K, Nakamoto D, Kinjo M, Yamamoto K T. Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiol, 2007, 144: 187-196[本文引用:1][JCR: 6.555]
[21]Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan L M, Deng X W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451: 475-479[本文引用:1][JCR: 38.597]
[22]Chiu T Y, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood J L, Clark G, Roux S J. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. Plant Cell Physiol, 2012, 53: 1913-1925[本文引用:1][JCR: 4.134]
[23]Cui X, Ge C, Wang R, Wang H, Chen W, Fu Z, Jiang X, Li J, Wang Y. The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis. Cell Res, 2010, 20: 576-586[本文引用:1][JCR: 10.526][CJCR: 1.1032]
[24]Stoppin-Mellet V, Gaillard J, Vantard M. Katanin’s severing activity favors bundling of cortical microtubules in plants. Plant J, 2006, 46: 1009-1017[本文引用:1][JCR: 6.582]
[25]Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mand er L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell, 2007, 19: 32-45[本文引用:1][JCR: 9.251]
[26]Park J E, Seo P J, Lee A K, Jung J H, Kim Y S, Park C M. An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediate sphytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol, 2007, 48: 1236-1241[本文引用:1][JCR: 4.134]
[27]Liang Z, Demko V, Wilson R C, Johnson K A, Ahmad R, Perroud P F, Quatrano R, Zhao S, Shalchian-Tabrizi K, Otegui M S, Olsen O A, Johansen W. The catalytic domain Cyspc of the DEK1 calpain is functionally conserved in land plants. Plant J, 2013, 75: 742-754[本文引用:1][JCR: 6.582]
[28]Wang Z Y, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J. Nuclear- localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002, 2: 505-513[本文引用:1][JCR: 12.861]
[29]Kim H U, Jung S J, Lee K R, Kim E H, Lee S M, Roh K H, Kim J B. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS Open Biol, 2013, 23: 25-32[本文引用:1]
[30]Theologis A, Ecker J R, Palm C J, Federspiel N A, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman C L, Brooks S Y, Buehler E, Chan A, Chao Q, Chen H, Cheuk R F, Chin C W, Chung M K, Conn L, Conway A B, Conway A R, Creasy T H, Dewar K, Dunn P, Etgu P, Feldblyum T V, Feng J, Fong B, Fujii C Y, Gill J E, Goldsmith A D, Haas B, Hansen N F, Hughes B, Huizar L, Hunter J L, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim C J, Koo H L, Kremenetskaia I, Kurtz D B, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee J M, Lenz C A, Li J H, Li Y, Lin X, Liu S X, Liu Z A, Luros J S, Maiti R, Marziali A, Militscher J, Mirand a M, Nguyen M, Nierman W C, Osborne B I, Pai G, Peterson J, Pham P K, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg S L, Schwartz J R, Shinn P, Southwick A M, Sun H, Tallon L J, Tambunga G, Toriumi M J, Town C D, Utterback T, Van Aken S, Vaysberg M, Vysotskaia V S, Walker M, Wu D, Yu G, Fraser C M, Venter J C, Davis R W. Sequence and analysis of chromosome 1 of the plantArabidopsis thaliana. Nature, 2000, 408: 816-820[本文引用:1]
[31]Wang X, Du G, Wang X, Meng Y, Li Y, Wu P, Yi K. The function of LPR1 is controlled by an element in the promoter and is independent of SUMOE3 ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana. Plant Cell Physiol, 2010, 51: 380-394[本文引用:1][JCR: 4.134]
[32]Remy E, Cabrito T R, Batista R A, Teixeira M C, Sá-Correia I, Duque P. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 2012, 195: 356-371[本文引用:1][JCR: 6.736]
[33]Calderon-Villalobos L I, Kuhnle C, Dohmann E M, Li H, Bevan M, Schwechheimer C. The evolutionarily conserved TOUGH protein is required for proper development ofArabidopsis thaliana. Plant Cell, 2005, 17: 2473-2485[本文引用:1]
[34]Efroni I, Blum E, Goldshmidt A, Eshed Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell, 2008, 20: 2293-2306[本文引用:1][JCR: 9.251]
[35]Roig-Villanova I, Bou J, Sorin C, Devlin P F, Martínez-García J F. Identification of primary target genes of phytochrome signaling: early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiol, 2006, 141: 85-96[本文引用:1][JCR: 6.555]
[36]Wu J, Wang F, Cheng L, Kong F, Peng Z, Liu S, Yu X, Lu G. Identification, isolation and expression analysis of auxin response factor (ARF) genes inSolanum lycopersicum. Plant Cell Rep, 2011, 30: 2059-2073[本文引用:1]
[37]Kuusk S, Sohlberg J J, Magnus Eklund D, Sundberg E. Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J, 2006, 47: 99-111[本文引用:1][JCR: 6.582]
[38]Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh S K, Kowalchyk M, Marchant A, Mills S, Sand berg G, Bennett M J, Estelle M. AXR4 is required for localization of the auxin influx facilitator AUX1. Science, 2006, 312: 1218-1220[本文引用:1]
[39]Yalovsky S, Kulukian A, Rodríguez-Concepción M, Young C A, Gruissem W. Functional requirement of plant farnesyl transferase during development in Arabidopsis. Plant Cell, 2000, 12: 1267-1278[本文引用:1][JCR: 9.251]
[40]Aguilar-Martínez J A, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 2007, 19: 458-472[本文引用:1][JCR: 9.251]
[41]Yalovsky S, Rodríguez-Concepción M, Bracha K, Toledo-Ortiz G, Gruissem W. Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell, 2000, 12: 1257-1266[本文引用:1][JCR: 9.251]
[42]Gao H B, Chu Y J, Xue H W. Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization. Mol Plant, 2013, 6: 1692-1702[本文引用:1][JCR: 6.126][CJCR: 0.9487]
[43]Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete M R, Zhu J, Dobrev P I, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012, 485: 119-122[本文引用:1][JCR: 38.597]
[44]王通强, 万育麟. 甘蓝型油菜数量性状的聚类和通径分析. 种子, 1991, (5): 14-17
Wang T Q, Wan Y L. The quantitative character’s aggregation and path analysis of Brassica napus. Seed, 1991, (5): 14-17 (in Chinese with English abstract)[本文引用:1][CJCR: 0.445]
[45]王瑞, 李加纳, 谌利, 唐章林. 甘蓝型黄籽油菜主要性状的通径分析. 中国农学通报, 2004, 20(6): 325-326
Wang R, Li J N, Chen L, Tang Z L. Path analysis for main characters inyellow-seeded rapeseed lines (Brassica napus L). Chin Agric Sci Bull, 2004, 20(6): 325-326 (in Chinese with English abstract)[本文引用:1]
[46]Palosz T, Sienkowski A, Grala B. Statistic relations between several factors of rape production. Arch Phytopathol Plant Prot, 1994, 29: 101-106[本文引用:1]
[47]周小丽, 王通强. 双低油菜主要农艺性状的通径分析. 种子, 2005, 24(1): 70-72
Zhou X L, Wang T Q. Path analysis of main agronomic characters of double low rape. Seed, 2005, 24(1): 70-72 (in Chinese with English abstract)[本文引用:1][CJCR: 0.445]
[48]杨安中, 彭春华. 油菜单株产量与若干农艺性状的相关分析. 安徽农学通报, 2006, 12(2): 33-34
Yang A Z, Peng C H. Relevant analysis yield per plant and some agronomic traits in rape. Anhui Agric Sci Bull, 2006, 12(2): 33-34 (in Chinese with English abstract)[本文引用:1][CJCR: 0.2433]
[49]Tuncturk M, Ciftci V. Relationships between yield and some yield components in rapeseed (Brassica napus L. ) cultivars by using correlation and path analysis. Pak J Bot, 2007, 39: 81-84[本文引用:1][JCR: 0.872]
[50]Xu J S, Song X, Cheng Y, Zou X L, Zeng L, Qiao X, Lu G Y, Fu G P, Qu Z, Zhang X K. Identification of QTLs for branch number in oilseed rape (Brassica napus L. ). J Genet Genomics, 2014, 41: 557-559[本文引用:1][JCR: 2.076][CJCR: 1.323]
[51]Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F. Detection of QTL for six yield-related traits in oil seed rape (Brassica napus) using DH and irnrnortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858[本文引用:1][JCR: 3.658]
[52]Quijada P A, Maureira I J, Osbom T C. Confirmation of QTL controlling seed yield in spring canola (Brassica napus L. ) hybrids. Mol Breed, 2004, 13: 193-200[本文引用:1][JCR: 3.251]
[53]Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rape seed (Brassica napus L. ): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113: 549-561[本文引用:1][JCR: 3.658]
[54]Udall J A, Quijada P A, Lambert B, Osbom T C. Quantitative trait analysis of seed yield and other complex traits in hyrid spring rape seed (Brassica napus L. ): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609[本文引用:1][JCR: 3.658]
[55]Zhao J, Beeker H C, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rape seed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33-38[本文引用:1][JCR: 3.658]
[56]Jian H J, Wei L J, Li J N, Xu X F, Chen L, Liu L Z. Mapping quantitative traits loci for seed glucosinolate content in Brassica napus using high-density SNP map. Acta Agron Sin, 2014, 40: 1386-1391[本文引用:1][CJCR: 1.667]
[57]荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊. 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014, 40: 629-635
Jian H J, Xiao Y, Li J N, Ma Z Z, Wei L J, Liu L Z. QTL mapping for germination percentage under salinity drought stresses in Brassica napus L. Acta Agron Sin, 2014, 40: 629-635 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[58]Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858[本文引用:1][JCR: 3.658]
[59]Ramchiary N, Padmaja K L. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet, 2007, 115: 807-817[本文引用:3][JCR: 3.658]
[60]Butruille D V, Guries R P, Osbom T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics, 1999, 153: 949-964[本文引用:3][JCR: 4.389]
[61]Yi B, Chen W, Ma C, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006, 32: 676-682[本文引用:3][CJCR: 1.667]
[62]Tuberosa R, Salvi S, Sanguineti M C, Land i P, Maecaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield: casestudies, short comings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941-96[本文引用:1][JCR: 0.657]
相关话题/基因 遗传 控制 环境 分枝