关键词:甘蓝型油菜; 单核苷酸多态性; 数量性状位点; 株高; 第1分枝高度; 分枝数 Quantitative Trait Loci Mapping for Plant Height, the First Branch Height, and Branch Number and Possible Candidate Genes Screening in Brassica napusL . WANG Jia**, JING Ling-Yun**, JIAN Hong-Ju, QU Cun-Min, CHEN Li, LI Jia-Na, LIU Lie-Zhao* College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
AbstractPlant height, the first branch height and branch number are important agronomic traits in rapeseed. In our study, QTL mapping of plant height, the first branch height and branch number in Brassica napus was tested by using the high density SNP genetic map constructed from the high generation RIL population with the rapeseed 60K chip array. The reference SNP genetic map contains 2795 SNP markers, covering 1832.9 cM with an average distance of 0.66 cM in B. napus genome. Totally, 24 putative QTLs were identified for plant height, the first branch height and branch number by using the complex interval mapping. The phenotypic variation was explained by individual QTL ranged from 5.00% to 15.26% for 11 QTLs of plant height, from 5.04% to 12.99% for seven QTLs of the first branch height, and from 5.95% to 8.14% for six QTLs of branch number. We collected 156 genes associated with plant height, 10 genes associated with the first branch height and 148 genes associated with branch number in Arabidopsis thalianaand searched the homology region of the QTL confidence interval E-value<1E-20 to screen the possible candidate genes. We found 20 genes associated with plant height, three genes associated with the first branch height and 12 genes associated with branch number. The plant height candidate genes ATGID1B/GID1B and WRI1 were found in QTL confidence interval on A07 and SLR/IAA14 and AXR2/IAA7 were found in QTL confidence interval on A08 in 2013 and 2014. The first branch height candidate gene PHT1;8 was found in QTLs q2013FBH-C05-1 and q2014FBH-C05-2 that had an overlapping confidence interval. Moreover, we found four genes associated with branch number that E-value from 0 to 3E-56 on A03 and C06, respectively.
Keyword: Brassica napus; SNP; QTL; Plant height; The first branch height; Branch number Show Figures Show Figures
图1 甘蓝型油菜重组自交系群体株高、第1分枝高和分枝数在2013年和2014年的频率分布Fig. 1 Frequency distribution of plant height, the first branch height, and branch number from B. napus RIL population in 2013 and 2014
表3 利用复合区间作图法检测到的株高(PH)、第1分枝高(FBH)和分枝数(BN)在2个环境中的QTL Table 3 Putative QTL detected by composite interval mapping for plant height (PH), the first branch height (FBH), and branch number (BN) in two environments
性状 Trait
数量性状座位 QTL
染色体 Chromosome
标记区间 Position
置信区间 Confidence interval
LOD
加性效应 Additive
贡献率 R2(%)
PH
q2013PH-A06
A06
22.01
SNP14242A06-SNP14309A06
3.68
5.10
5.86
q2013PH-A07
A07
61.51
SNP15557A07-SNP15554A07
5.49
-6.77
10.47
q2013PH-A08
A08
75.21
SNP17561A08-SNP19318A08
5.61
-6.03
8.53
q2013PH-A10
A10
40.61
SNP22138A10-SNP22091A10
3.09
5.16
5.21
q2013PH-C06
C06
47.21
SNP41759C06-SNP36796
9.76
8.13
15.56
q2014PH-A01
A01
56.11
SNP2507A01-SNP2403A01
3.02
-4.27
5.18
q2014PH-A06
A06
58.71
SNP14986A06-SNP12820A06
3.14
4.30
5.27
q2014PH-A07-2
A07
71.31
SNP15747A07-SNP15778A07
3.11
-4.14
5.00
q2014PH-A07-1
A07
61.51
SNP15557A07-SNP15554A07
6.12
-6.62
12.80
q2014PH-A08
A08
75.21
SNP17561A08-SNP19318A08
4.86
-4.83
7.05
q2014PH-C06
C06
48.91
SNP36829-SNP36812
7.51
5.87
10.15
FBH
q2013FBH-C05-2
C05
72.91
SNP37857-SNP42376C05
4.66
7.35
5.66
q2013FBH-C05-1
C05
62.71
SNP28959C05-SNP44638C05
3.55
8.29
6.92
q2013FBH-C06-2
C06
56.81
SNP24413C06-SNP24466C06
3.54
8.73
7.58
q2013FBH-C06-1
C06
49.21
SNP36829-SNP36827
5.89
11.41
12.99
q2014FBH-A06
A06
8.91
SNP13071A06-SNP13385A06
4.00
5.19
5.04
q2014FBH-C05-2
C05
66.11
SNP47509C05-SNP44638C05
4.57
5.84
6.31
q2014FBH-C05-1
C05
58.71
SNP39974C05-SNP28197
3.69
6.36
7.45
BN
q2013BN-A03
A03
22.41
SNP6539A03-SNP6422A03
4.54
-0.54
7.67
q2013BN-C06
C06
36.91
SNP29430C06-SNP29760C06
3.59
-0.47
6.04
q2014BN-A07
A07
24.31
SNP7695A03-SNP17501A07
3.48
-0.35
6.13
q2014BN-C01
C01
19.01
SNP46967C01-SNP34335C01
4.09
0.46
8.41
q2014BN-C04
C04
59.21
SNP34444-SNP26297
3.59
0.35
6.37
q2014BN-C06
C06
28.11
SNP29459-SNP29410C06
3.20
-0.33
5.95
表3 利用复合区间作图法检测到的株高(PH)、第1分枝高(FBH)和分枝数(BN)在2个环境中的QTL Table 3 Putative QTL detected by composite interval mapping for plant height (PH), the first branch height (FBH), and branch number (BN) in two environments
图2 甘蓝型油菜株高、第1分枝高及分枝数QTL在SNP连锁群上分布图Fig. 2 Putative QTL locations of plant height, the first branch height, and branch number on the SNP genetic map
表4 Table 4 表4(Table 4)
表4 甘蓝型油菜基因组中QTL置信区间候选基因与拟南芥相关基因的比对 Table 4 Alignment of candidate genes in QTL confidence interval in B. napuswith the related genes in Arabidopsis thaliana
性状 Trait
数量性状座位 QTL
拟南芥相关基因 Related genes in A. thaliana
名称 Name
物理区间 Physical interval
预测基因 Gene prediction
基因名 Gene name
登录号 Accessions number
E值 E-value
PH
q2013PH-A06
2371514-3103568
BnaA06g37850D
PIF3
AT1G09530
6E-63
q2013PH-A06
2371514-3103568
BnaA06g05470D
PHYA
AT1G09570
0
q2013PH-A06
2371514-3103568
BnaA06g03910D
GCR1
AT1G48270
1E-53
q2013PH-A07
13870810-15602504
BnaA07g19530D
ATGID1B/ GID1B
AT3G63010
0
q2013PH-A07
13870810-15602504
BnaA07g16350D
WRI1
AT3G54320
4E-46
q2013PH-A08
5330869-5684994
BnaA08g05350D
IAA14/SLR
AT4G14550
1E-63
q2013PH-A08
5330869-5684994
BnaA08g05350D
IAA7/AXR2
AT3G23050
9E-24
q2013PH-A10
12371885-12610538
BnaA10g17240D
RGL3
AT5G17490
0
q2013PH-A10
12371885-12610538
BnaA10g16550D
ATAPY2/APY2
AT5G18280
8E-87
q2013PH-A10
12371885-12610538
BnaA10g16110D
BUD2/SAMDC4
AT5G18930
0
q2013PH-C06
21465525-24243988
BnaC06g19100D
LUE1
AT1G80350
1E-100
q2014PH-A01
6898804-8402453
BnaA01g15540D
GAMT1
AT4G26420
6E-80
q2014PH-A01
6898804-8402453
BnaA01g16300D
WES1
AT4G27260
0
q2014PH-A06
5330869-5684994
BnaA06g00360D
DEK1
AT1G55350
0
q2014PH-A07-2
16688281-16912983
BnaA07g21900D
BZR1
AT1G75080
0
q2014PH-A07-1
13870810-15602504
BnaA07g19530D
ATGID1B/GID1B
AT3G63010
0
q2014PH-A07-1
13870810-15602504
BnaA07g16350D
WRI1
AT3G54320
4E-46
q2014PH-A08
5330869-5684994
BnaA08g05350D
IAA14/SLR
AT4G14550
1E-63
q2014PH-A08
5330869-5684994
BnaA08g05350D
IAA7/AXR2
AT3G23050
9E-24
q2014PH-C06
32013794-33834232
BnaC06g34300D
T9L24.44
AT1G73340
2E-98
q2014PH-C06
32013794-33834232
BnaC06g32200D
LPR2
AT1G71040
0
FBH
q2013FBH-C05-1
8025904-12092352
BnaC05g16120D
PHT1; 8
AT1G20860
0
q2014FBH-C05-2
9283565-12092352
BnaC05g16120D
PHT1; 8
AT1G20860
0
q2014FBH-C05-2
9283565-12092352
BnaC05g18410D
LPR1
AT1G23010
0
BN
q2013BN-A03
19776618-24907552
BnaA03g48550D
WES1
AT4G27260
0
q2013BN-A03
19776618-24907552
BnaA03g39630D
TGH
AT5G23080
1E-157
q2013BN-A03
19776618-24907552
BnaA03g39870D
TCP5
AT5G60970
0
q2013BN-A03
19776618-24907552
BnaA03g43080D
HAT1, HAT2
AT5G47370
3E-56
q2014BN-A07
10780228-11403972
BnaA07g11660D
ARF5/IAA24
AT1G19850
5E-70
q2014BN-A07
10780228-11403972
BnaA07g12710D
SHI
AT5G66350
E-119
q2014BN-C01
24141843-26227700
BnaC01g26840D
AXR4
AT1G54990
0
q2014BN-C04
34037875-38776266
BnaC04g32260D
ERA1
AT5G40280
2E-65
q2014BN-C06
30464787-32535173
BnaC06g29550D
BRC2, TCP12
AT1G68800
7E-66
q2014BN-C06
30464787-32535173
BnaC06g29980D
AP1, AGL7
AT1G69120
6E-88
q2014BN-C06
30464787-32535173
BnaC06g31070D
PP2A
AT1G69960
1E-148
q2014BN-C06
30464787-32535173
BnaC06g32240D
AT1G71090
AT1G71090
0
表4 甘蓝型油菜基因组中QTL置信区间候选基因与拟南芥相关基因的比对 Table 4 Alignment of candidate genes in QTL confidence interval in B. napuswith the related genes in Arabidopsis thaliana
表5 拟南芥中株高(PH)、第1分枝高(FBH)和分枝数(BN)候选基因功能 Table 5 Functions of candidate genes related to plant height (PH), the first branch height (FBH), and branch number (BN) in A. thaliana
性状 Trait
基因 Gene
基因功能 Gene function
参考文献 Reference
PH
PIF3
与启动子LHY和CCA1的G-box形成三元复合物, 是植酸酶B信号转导的负调控子。 Forms a ternary complex with G-box element of the promoters of LHY, CCA1. Acts as a negative regulator of phyB signaling.
玉米胚乳糊粉层细胞的发育基因, 编码蛋白酶基因超家族的膜蛋白。 A gene encoding a membrane protein of the calpain gene superfamily required for aleurone cell development in the endosperm of maize grains.
油菜素内酯信号通路中的关键转录因子, 调控下游响应基因的表达。 Encodes a positive regulator of the brassinosteroid (BR) signalling pathway that mediates both downstream BR responses.
表5 拟南芥中株高(PH)、第1分枝高(FBH)和分枝数(BN)候选基因功能 Table 5 Functions of candidate genes related to plant height (PH), the first branch height (FBH), and branch number (BN) in A. thaliana
JamesC. Global review of commercialized transgenic crops. , 2003, 84: 303-309[本文引用:1][JCR: 0.905]
[2]
易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. , 2006, 32: 676-682YiB, ChenW, Ma CZ, Fu TD, Tu JX. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. , 2006, 32: 676-682 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[3]
LiW, Lin ZX, Zhang XL. A novel segregation distortion in intraspecific population of Asian cotton (Gossypium arboretum L. ) detected by molecular markers. , 2007, 34: 634-640[本文引用:3][JCR: 2.076][CJCR: 1.323]
[4]
ChenW, ZhangY, Liu XP, Chen BY, Tu JX, Fu TD. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. , 2007, 115: 849-858[本文引用:3][JCR: 3.658]
[5]
张倩. 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位. 西南大学硕士学位论文, , 2013ZhangQ. Genetic Effects Analysis and QTL Mapping of Major Plant-type Traits in Brassica napus L. PhD Dissertation of Southwest University, Chingqing, , 2013 (in Chinese with English abstract)[本文引用:1]
[6]
Zhang SH, Fu TD, Zhu JC, Wang JP, Wen YC, Ma CZ, Jiang YZ. QTL mapping and epistasis analysis for plant height and height to the first branch in rapeseed (Brassica napus L. ). , 2007, 2: 232-235[本文引用:1]
[7]
Wang DG, Fan JB, Siao CJ, BernoA, YoungP, SapolskyR, Ghand ourG, PerkinsN, WinchesterE, SpencerJ, KruglyakL, SteinL, HsieL, TopaloglouT, HubbellE, RobinsonE, MittmannM, Morris MS, ShenN, KilburnD, RiouxJ, NusbaumC, RozenS, Hudson TJ, LipshutzR, CheeM, Land er ES. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. , 1998, 280: 1077-1082[本文引用:1]
[8]
ChalhoubB, DenoeudF, LiuS, Parkin IA, TangH, WangX, ChiquetJ, BelcramH, TongC, SamansB, CorréaM, Da SilvaC, JustJ, FalentinC, Koh CS, Le ClaincheI, BernardM, BentoP, NoelB, LabadieK, AlbertiA, CharlesM, ArnaudD, GuoH, DaviaudC, AlameryS, JabbariK, ZhaoM, Edger PP, ChelaifaH, TackD, LassalleG, MestiriI, SchnelN, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. , 2014, 345: 950-953[本文引用:2]
[9]
Liu LZ, Qu CM, WittkopB, YiB, XiaoY, He HJ, SnowdonR, LiJ. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. , 2013, 8: e83052[本文引用:2][JCR: 3.73]
Land er ES, BotsteinD. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, 121: 185-199[本文引用:1][JCR: 4.389]
[12]
Mccouch SR, Cho YG, YanoM, PaulE, BlinstrubM, MorishimaH, KinoshitaT. Report on QTL nomenclature. , 1997, 14[本文引用:1]
[13]
Shi JQ, Li RY, QiuD, Jiang CC, LongY, MorganC, NancroftI, Zhao JY, Meng JL. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. , 2009, 182: 851-861[本文引用:5][JCR: 4.389]
[14]
Ding GD, Zhao ZK, LiaoY, Hu YF, ShiL, LongY, Xu FS. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. , 2012, 109: 747-759[本文引用:6][JCR: 0.657]
[15]
Shi TX, Li RY, Zhao ZK, Ding GD, LongY, Meng JL, Xu FS, ShiL. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. , 2013, 8: e54559[本文引用:8][JCR: 3.73]
[16]
Sentand reuM, MartínG, González-SchainN, LeivarP, SoyJ, Tepperman JM, Quail PH, MonteE. Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in Arabidopsis. , 2011, 23: 3974-3991[本文引用:1][JCR: 9.251]
[17]
OkaY, OnoY, Toledo-OrtizG, KokajiK, MatsuiM, MochizukiN, NagataniA. Arabidopsis phytochrome a is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. , 2012, 24: 2949-2962[本文引用:1][JCR: 9.251]
[18]
Chen JG, Pand eyS, HuangJ, Alonso JM, Ecker JR, Assmann SM, Jones AM. GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. , 2004, 135: 907-915[本文引用:1][JCR: 6.555]
[19]
IuchiS, SuzukiH, Kim YC, IuchiA, KuromoriT, Ueguchi- TanakaM, AsamiT, YamaguchiI, MatsuokaM, KobayashiM, NakajimaM. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. , 2007, 50: 958-966[本文引用:1][JCR: 6.582]
[20]
MutoH, Watahiki MK, NakamotoD, KinjoM, Yamamoto KT. Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. , 2007, 144: 187-196[本文引用:1][JCR: 6.555]
[21]
FengS, MartinezC, GusmaroliG, WangY, ZhouJ, WangF, ChenL, YuL, Iglesias-PedrazJM, KircherS, SchäferE, FuX, Fan LM, Deng XW. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. , 2008, 451: 475-479[本文引用:1][JCR: 38.597]
[22]
Chiu TY, ChristiansenK, MorenoI, LaoJ, LoquéD, OrellanaA, Heazlewood JL, ClarkG, Roux SJ. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. , 2012, 53: 1913-1925[本文引用:1][JCR: 4.134]
[23]
CuiX, GeC, WangR, WangH, ChenW, FuZ, JiangX, LiJ, WangY. The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis. , 2010, 20: 576-586[本文引用:1][JCR: 10.526][CJCR: 1.1032]
[24]
Stoppin-MelletV, GaillardJ, VantardM. Katanin’s severing activity favors bundling of cortical microtubules in plants. , 2006, 46: 1009-1017[本文引用:1][JCR: 6.582]
[25]
VarbanovaM, YamaguchiS, YangY, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mand er L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. , 2007, 19: 32-45[本文引用:1][JCR: 9.251]
[26]
Park JE, Seo PJ, Lee AK, Jung JH, Kim YS, Park CM. An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediate sphytochrome B-regulated light signals in hypocotyl growth. , 2007, 48: 1236-1241[本文引用:1][JCR: 4.134]
[27]
LiangZ, DemkoV, Wilson RC, Johnson KA, AhmadR, Perroud PF, QuatranoR, ZhaoS, Shalchian-TabriziK, Otegui MS, Olsen OA, JohansenW. The catalytic domain Cyspc of the DEK1 calpain is functionally conserved in land plants. , 2013, 75: 742-754[本文引用:1][JCR: 6.582]
[28]
Wang ZY, NakanoT, GendronJ, HeJ, ChenM, VafeadosD, YangY, FujiokaS, YoshidaS, AsamiT, ChoryJ. Nuclear- localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. , 2002, 2: 505-513[本文引用:1][JCR: 12.861]
[29]
Kim HU, Jung SJ, Lee KR, Kim EH, Lee SM, Roh KH, Kim JB. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. , 2013, 23: 25-32[本文引用:1]
[30]
TheologisA, Ecker JR, Palm CJ, Federspiel NA, KaulS, WhiteO, AlonsoJ, AltafiH, AraujoR, Bowman CL, Brooks SY, BuehlerE, ChanA, ChaoQ, ChenH, Cheuk RF, Chin CW, Chung MK, ConnL, Conway AB, Conway AR, Creasy TH, DewarK, DunnP, EtguP, Feldblyum TV, FengJ, FongB, Fujii CY, Gill JE, Goldsmith AD, HaasB, Hansen NF, HughesB, HuizarL, Hunter JL, JenkinsJ, Johnson-HopsonC, KhanS, KhaykinE, Kim CJ, Koo HL, KremenetskaiaI, Kurtz DB, KwanA, LamB, Langin-HooperS, LeeA, Lee JM, Lenz CA, Li JH, LiY, LinX, Liu SX, Liu ZA, Luros JS, MaitiR, MarzialiA, MilitscherJ, Mirand aM, NguyenM, Nierman WC, Osborne BI, PaiG, PetersonJ, Pham PK, RizzoM, RooneyT, RowleyD, SakanoH, Salzberg SL, Schwartz JR, ShinnP, Southwick AM, SunH, Tallon LJ, TambungaG, Toriumi MJ, Town CD, UtterbackT, Van AkenS, VaysbergM, Vysotskaia VS, WalkerM, WuD, YuG, Fraser CM, Venter JC, Davis RW. Sequence and analysis of chromosome 1 of the plant, 2000, 408: 816-820[本文引用:1]
[31]
WangX, DuG, WangX, MengY, LiY, WuP, YiK. The function of LPR1 is controlled by an element in the promoter and is independent of SUMOE3 ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana. , 2010, 51: 380-394[本文引用:1][JCR: 4.134]
[32]
RemyE, Cabrito TR, Batista RA, Teixeira MC, Sá-CorreiaI, DuqueP. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. , 2012, 195: 356-371[本文引用:1][JCR: 6.736]
[33]
Calderon-Villalobos LI, KuhnleC, Dohmann EM, LiH, BevanM, SchwechheimerC. The evolutionarily conserved TOUGH protein is required for proper development of, 2005, 17: 2473-2485[本文引用:1]
[34]
EfroniI, BlumE, GoldshmidtA, EshedY. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. , 2008, 20: 2293-2306[本文引用:1][JCR: 9.251]
[35]
Roig-VillanovaI, BouJ, SorinC, Devlin PF, Martínez-García J F. Identification of primary target genes of phytochrome signaling: early transcriptional control during shade avoidance responses in Arabidopsis. , 2006, 141: 85-96[本文引用:1][JCR: 6.555]
[36]
WuJ, WangF, ChengL, KongF, PengZ, LiuS, YuX, LuG. Identification, isolation and expression analysis of auxin response factor (ARF) genes in, 2011, 30: 2059-2073[本文引用:1]
[37]
KuuskS, Sohlberg JJ, Magnus EklundD, SundbergE. Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. , 2006, 47: 99-111[本文引用:1][JCR: 6.582]
[38]
DharmasiriS, SwarupR, MockaitisK, DharmasiriN, Singh SK, KowalchykM, MarchantA, MillsS, Sand bergG, Bennett MJ, EstelleM. AXR4 is required for localization of the auxin influx facilitator AUX1. , 2006, 312: 1218-1220[本文引用:1]
[39]
YalovskyS, KulukianA, Rodríguez-ConcepciónM, Young CA, GruissemW. Functional requirement of plant farnesyl transferase during development in Arabidopsis. , 2000, 12: 1267-1278[本文引用:1][JCR: 9.251]
[40]
Aguilar-Martínez JA, Poza-CarriónC, CubasP. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. , 2007, 19: 458-472[本文引用:1][JCR: 9.251]
[41]
YalovskyS, Rodríguez-ConcepciónM, BrachaK, Toledo-OrtizG, GruissemW. Prenylation of the floral transcription factor APETALA1 modulates its function. , 2000, 12: 1257-1266[本文引用:1][JCR: 9.251]
王通强, 万育麟. 甘蓝型油菜数量性状的聚类和通径分析. , 1991, (5): 14-17Wang TQ, Wan YL. The quantitative character’s aggregation and path analysis of Brassica napus. , 1991, (5): 14-17 (in Chinese with English abstract)[本文引用:1][CJCR: 0.445]
[45]
王瑞, 李加纳, 谌利, 唐章林. 甘蓝型黄籽油菜主要性状的通径分析. , 2004, 20(6): 325-326WangR, Li JN, ChenL, Tang ZL. Path analysis for main characters inyellow-seeded rapeseed lines (Brassica napus L). , 2004, 20(6): 325-326 (in Chinese with English abstract)[本文引用:1]
[46]
PaloszT, SienkowskiA, GralaB. Statistic relations between several factors of rape production. , 1994, 29: 101-106[本文引用:1]
[47]
周小丽, 王通强. 双低油菜主要农艺性状的通径分析. , 2005, 24(1): 70-72Zhou XL, Wang TQ. Path analysis of main agronomic characters of double low rape. , 2005, 24(1): 70-72 (in Chinese with English abstract)[本文引用:1][CJCR: 0.445]
[48]
杨安中, 彭春华. 油菜单株产量与若干农艺性状的相关分析. , 2006, 12(2): 33-34Yang AZ, Peng CH. Relevant analysis yield per plant and some agronomic traits in rape. , 2006, 12(2): 33-34 (in Chinese with English abstract)[本文引用:1][CJCR: 0.2433]
[49]
TuncturkM, CiftciV. Relationships between yield and some yield components in rapeseed (Brassica napus L. ) cultivars by using correlation and path analysis. , 2007, 39: 81-84[本文引用:1][JCR: 0.872]
[50]
Xu JS, SongX, ChengY, Zou XL, ZengL, QiaoX, Lu GY, Fu GP, QuZ, Zhang XK. Identification of QTLs for branch number in oilseed rape (Brassica napus L. ). , 2014, 41: 557-559[本文引用:1][JCR: 2.076][CJCR: 1.323]
[51]
ChenW, ZhangY, LiuX, ChenB, TuJ, TingdongF. Detection of QTL for six yield-related traits in oil seed rape (Brassica napus) using DH and irnrnortalized F2 populations. , 2007, 115: 849-858[本文引用:1][JCR: 3.658]
[52]
Quijada PA, Maureira IJ, Osbom TC. Confirmation of QTL controlling seed yield in spring canola (Brassica napus L. ) hybrids. , 2004, 13: 193-200[本文引用:1][JCR: 3.251]
[53]
Quijada PA, Udall JA, LambertB, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rape seed (Brassica napus L. ): 1. Identification of genomic regions from winter germplasm. , 2006, 113: 549-561[本文引用:1][JCR: 3.658]
[54]
Udall JA, Quijada PA, LambertB, Osbom TC. Quantitative trait analysis of seed yield and other complex traits in hyrid spring rape seed (Brassica napus L. ): 2. Identification of alleles from unadapted germplasm. , 2006, 113: 597-609[本文引用:1][JCR: 3.658]
[55]
ZhaoJ, Beeker HC, ZhangD, ZhangY, EckeW. Conditional QTL mapping of oil content in rape seed with respect to protein content and traits related to plant development and grain yield. , 2006, 113: 33-38[本文引用:1][JCR: 3.658]
[56]
Jian HJ, Wei LJ, Li JN, Xu XF, ChenL, Liu LZ. Mapping quantitative traits loci for seed glucosinolate content in Brassica napus using high-density SNP map. , 2014, 40: 1386-1391[本文引用:1][CJCR: 1.667]
[57]
荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊. 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. , 2014, 40: 629-635Jian HJ, XiaoY, Li JN, Ma ZZ, Wei LJ, Liu LZ. QTL mapping for germination percentage under salinity drought stresses in Brassica napus L. , 2014, 40: 629-635 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[58]
ChenW, ZhangY, Liu XP, Chen BY, Tu JX, Fu TD. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. , 2007, 115: 849-858[本文引用:1][JCR: 3.658]
[59]
RamchiaryN, Padmaja KL. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. , 2007, 115: 807-817[本文引用:3][JCR: 3.658]
[60]
Butruille DV, Guries RP, Osbom TC. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. , 1999, 153: 949-964[本文引用:3][JCR: 4.389]
[61]
YiB, ChenW, MaC, Fu TD, Tu JX. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. , 2006, 32: 676-682[本文引用:3][CJCR: 1.667]
[62]
TuberosaR, SalviS, Sanguineti MC, Land iP, MaecaferriM, ContiS. Mapping QTLs regulating morpho-physiological traits and yield: casestudies, short comings and perspectives in drought-stressed maize. , 2002, 89: 941-96[本文引用:1][JCR: 0.657]