摘要本研究旨在探明中籼水稻在品种改良过程中产量与氮肥利用效率的变化特点。以江苏省近70年来不同年代在生产上广泛应用的12个代表性中籼水稻品种(含杂交稻组合)为材料, 依据应用年代将其分为20世纪40—50年代、60—70年代、80—90年代和2000年以后4个类型, 设置0 N (全生育期不施氮)、MN (全生育期施氮210 kg hm-2) 和HN (全生育期施氮300 kg hm-2) 3个施氮量处理, 研究其产量、氮肥利用效率及其生理特性。结果表明, 随品种应用年代的演进, 不同年代中籼水稻品种的产量和氮肥利用效率均获得较大提高。2000年以后的品种(超级稻)产量和氮肥利用效率较高, 根系性状和叶片光合特性以及氮代谢相关酶活性强是其重要生理基础。超级稻抽穗后根系氧化力和剑叶光合速率下降的幅度较大可能是导致超级稻结实率较低的一个重要原因。提高灌浆中后期超级稻的根系氧化力和剑叶光合速率, 有望提高超级稻的结实率。
关键词:中籼水稻; 氮肥利用效率; 产量 Grain Yield and Nitrogen Use Efficiency of Mid-season IndicaRice Cultivars Applied at Different Decades JU Cheng-Xin1, TAO Jin1, QIAN Xi-Yang1, GU Jun-Fei1, ZHAO Bu-Hong2, YANG Kai-Peng3, WANG Zhi-Qin1, YANG Jian-Chang1,* 1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
2 Lixiahe Region Agricultural Research Institute of Jiangsu, Yangzhou 225007, China
3 Donghai Prefectural Agriculture Committee of Jiangsu, Lianyungang 222300, China
AbstractImprovement in rice cultivars plays an important role in increasing grain yield. However, little is known about the relationship between yield and nitrogen use efficiency in mid-season indica rice cultivar improvement process. In this study, 12 typical cultivars (including hybrid combinations) applied in the production in Jiangsu Province during the last 70 years were used, and classified into four types of 1940-1950s, 1960-1970s, 1980-1990s, and after 2000 (super rice) according to their application times. Three treatments of zero N (0N), 210 kg ha-1 N (MN) and 300 kg ha-1 N (HN) were designed. The results showed that grain yield and nitrogen use efficiency were progressively increased with the improvement of cultivars under each nitrogen rate. The super rice cultivars had a higher biomass and nitrogen accumulation, higher activities of root oxidation and nitrogen metabolic enzyme and higher leaf photosynthetic rate resulting in higher grain yield and nitrogen use efficiency when compared with any other types of cultivars. The root oxidation activity and photosynthetic characteristics of super rice were the peak at the heading stage, but sharp declined from heading to maturity, which could account for an important physiological reason for a lower filled-grain percentage of super rice. It would be an important approach to further increase grain yield of super rice through increasing root activity and leaf photosynthetic rate during grain filling.
Keyword:Middle-seasonindica rice; Nitrogen use efficiency; Grain yield Show Figures Show Figures
表2 中籼水稻品种产量及其构成因素的变化 Table 2 Changes of grain yield and its components of mid-season indica rice cultivars
年/处理 Year/ treatment
类型 Type
产量 Grain yield (t hm-2)
穗数 No. of panicles (× 104 hm-2)
穗粒数 Spikelets per panicle
总颖花量 Total spikelets (× 106 hm-2)
结实率 Filled grains (%)
千粒重 1000-grain weight (g)
2012
0N
1940-1950s
3.41 g
199.78 d
118.22 e
236.18 g
58.91 e
24.51 b
1960-1970s
5.18 e
182.00 e
139.31 d
253.55 g
85.05 ab
24.02 bc
1980-1990s
6.54 d
170.26 e
165.68 b
282.09 f
89.38 a
25.94 a
2000-
6.96 d
149.96 f
208.43 a
312.56 e
82.14 bc
26.11 a
MN
1940-1950s
4.79 f
257.38 a
126.76 de
326.26 e
59.56 e
24.65 b
1960-1970s
6.79 d
247.37 ab
144.57 cd
357.62 d
78.49 cd
24.19 b
1980-1990s
8.53 c
233.84 b
163.93 b
383.34 c
85.39 ab
26.06 a
2000-
9.13 b
217.40 c
206.36 a
448.62 b
78.36 cd
25.97 a
HN
1940-1950s
4.60 f
263.47 a
118.79 e
312.98 e
62.49 e
23.52 c
1960-1970s
6.85 d
260.98 a
140.55 d
366.81 cd
77.04 cd
24.24 b
1980-1990s
8.36 c
232.12 bc
160.89 bc
373.45 c
85.57 ab
26.16 a
2000-
10.08 a
239.25 b
215.47 a
515.52 a
74.99 d
26.07 a
2013
0N
1940-1950s
3.54 f
202.18 cd
123.64 d
249.98 f
58.69 e
24.13 b
1960-1970s
5.17 e
185.82 de
143.63 c
266.89 ef
82.12 b
23.59 b
1980-1990s
6.39 d
165.69 e
166.39 b
275.69 ef
88.23 a
26.27 a
2000-
7.12 d
158.93 e
211.50 a
336.13 cd
77.88 c
27.20 a
MN
1940-1950s
4.74 e
246.76 a
133.95 cd
330.53 cd
58.63 e
24.46 b
1960-1970s
6.87 d
244.38 ab
143.74 c
351.27 cd
81.83 b
23.90 b
1980-1990s
8.40 c
227.87 bc
165.46 b
377.04 c
85.99 a
25.91 a
2000-
9.19 b
216.63 bc
212.18 a
459.65 b
76.72 cd
26.06 a
HN
1940-1950s
4.54 e
252.75 a
124.32 d
314.22 de
61.59 e
23.46 b
1960-1970s
6.89 d
254.86 a
144.40 c
368.02 c
77.65 c
24.11 b
1980-1990s
8.32 c
234.78 ab
157.73 b
370.32 c
85.95 b
26.14 a
2000-
10.11 a
240.53 ab
216.73 a
521.29 a
74.25 d
26.12 a
0N: no nitrogen application; MN: middle nitrogen application (210 kg hm-2); HN: high nitrogen application (300 kg hm-2). Values with in the same column and same year followed by a different letter are significantly different at the 0.05 probability level. 0N: 全生育期不施氮; MN: 全生育期施氮210 kg hm-2; HN: 全生育期施氮300 kg hm-2; 同栏同年内比较, 不同字母表示P=0.05水平上差异显著。
表2 中籼水稻品种产量及其构成因素的变化 Table 2 Changes of grain yield and its components of mid-season indica rice cultivars
表3 中籼水稻品种不同生育期的生物量的变化 Table 3 Changes of biomass of mid-season indica rice cultivars at different growth stages (t hm-2)
处理 Treatment
类型 Type
分蘖中期 Mid-tillering
幼穗分化期 Panicle initiation
抽穗期 Heading
成熟期 Maturity
收获指数 Harvest index
0N
1940-1950s
1.94 e
2.83 f
5.16 g
7.69 h
0.452 e
1960-1970s
1.94 e
2.96 ef
5.36 g
9.11 g
0.568 a
1980-1990s
1.75 f
3.07 e
6.23 f
11.82 e
0.547 b
2000-
1.43 g
2.96 ef
7.11 e
13.43 d
0.524 b
MN
1940-1950s
2.59 c
3.33 d
6.22 f
10.46 f
0.456 e
1960-1970s
2.56 cd
3.52 c
6.97 e
12.86 d
0.531 b
1980-1990s
2.45 d
4.34 b
8.50 c
16.56 c
0.511 c
2000-
2.01 e
4.28 b
10.21 b
18.24 b
0.502 c
HN
1940-1950s
2.76 b
3.70 c
6.80 e
10.38 f
0.440 g
1960-1970s
2.98 a
4.21 b
7.80 d
13.34 d
0.515 c
1980-1990s
2.73 b
5.10 a
9.70 b
16.20 c
0.515 c
2000-
2.57 cd
5.15 a
10.75 a
21.01 a
0.480 d
0N: no nitrogen application; MN: middle nitrogen application (210 kg hm-2); HN: high nitrogen application (300 kg hm-2). Values with in the same column and same year followed by a different letter are significantly different at the 0.05 probability level. 0N: 全生育期不施氮; MN: 全生育期施氮210 kg hm-2; HN: 全生育期施氮300 kg hm-2; 同栏同年内比较, 不同字母表示P=0.05水平上差异显著。
表3 中籼水稻品种不同生育期的生物量的变化 Table 3 Changes of biomass of mid-season indica rice cultivars at different growth stages (t hm-2)
表4 中籼水稻品种的氮肥利用效率的变化 Table 4 Changes of efficiency of applied nitrogen fertilizer of mid-season indica rice cultivars
年/类型 Year/type
农学利用率AE (kg kg-1)
吸收利用率RE (%)
生理利用率PE (kg kg-1)
偏生产力PFP (kg kg-1)
MN
HN
MN
HN
MN
HN
MN
HN
2012
1940-1950s
6.57 c
3.97 c
24.15 b
18.04 d
27.21 b
21.99 b
22.81 c
15.33 d
1960-1970s
7.67 b
5.57 b
28.11 b
26.47 c
27.27 b
21.03 b
32.33 b
22.83 c
1980-1990s
9.48 a
6.07 b
34.53 a
33.43 b
27.44 b
18.15 b
40.62 a
27.87 b
2000-
10.33 a
10.40 a
35.07 a
39.76 a
29.46 a
26.16 a
43.48 a
33.60 a
2013
1940-1950s
5.71 b
3.33 c
22.93 b
16.35 d
24.92 c
20.39 b
22.57 c
15.13 d
1960-1970s
8.10 b
5.73 b
26.01 b
25.76 c
31.12 a
22.26 b
32.71 b
22.97 c
1980-1990s
9.57 a
6.43 b
33.83 a
32.75 b
28.29 b
19.64 b
40.00 a
27.73 b
2000-
9.86 a
9.97 a
34.47 a
38.88 a
28.60 b
25.63 a
43.76 a
33.70 a
AE: agronomic efficiency; RE: recovery efficiency; PE: physiological efficiency; PFP: partial factor productivity. Values with in the same column and same year followed by a different letter are significantly different at the 0.05 probability level. AE: 农学利用率; RE: 吸收利用率; PE: 生理利用率; PFP: 偏生产力; 同栏同年内比较, 不同字母表示P=0.05水平上差异显著。
表4 中籼水稻品种的氮肥利用效率的变化 Table 4 Changes of efficiency of applied nitrogen fertilizer of mid-season indica rice cultivars
表5 中籼水稻品种的叶片氮代谢酶活性的变化 Table 5 Changes of activities of main enzymes involved in nitrogen metabolism in leaves of mid-season indica rice cultivars
生育期 Growth stage
类型 Type
谷氨酰胺合成酶GS (nmol h-1 mg-1 Protein)
硝酸还原酶NR (μ g NO2 h-1 g-1)
谷氨酸合酶Fd-GOGAT (nmol h-1 mg-1 Protein)
0N
MN
HN
0N
MN
HN
0N
MN
HN
幼穗分化期 Panicle initiation
1940-1950s
253.2 d
306.6 d
316.7 d
72.3 d
95.4 d
92.3 d
136.7 d
172.9 d
193.4 d
1960-1970s
279.3 c
357.4 c
362.4 c
81.3 c
130.8 c
124.8 c
166.8 c
213.3 c
227.3 c
1980-1990s
330.1 b
403.8 b
415.8 b
98.9 b
142.6 b
138.9 b
196.4 b
241.8 b
263.6 b
2000-
392.3 a
494.7 a
521.6 a
108.7 a
167.3 a
172.3 a
253.5 a
298.7 a
324.7 a
抽穗期 Heading
1940-1950s
219.4 d
274.6 d
281.6 d
57.4 d
76.2 d
72.6 d
92.3 d
124.5 d
128.6 d
1960-1970s
244.7 c
325.1 c
329.3 c
73.1 c
112.1 c
109.4 c
107.6 c
151.3 c
180.3 c
1980-1990s
297.2 b
366.4 b
372.2 b
82.8 b
123.5 b
118.2 b
145.4 b
188.4 b
208.4 b
2000-
358.5 a
461.1 a
486.5 a
91.3 a
145.7 a
151.4 a
205.2 a
242.7 a
265.1 a
GS: glutamine synthetase; NR: nitrate reductase; Fd-GOGAT: ferredoxin-glutamate synthase. Values followed by a different letter with in a column are significantly different at the 0.05 probability level. GS: 谷氨酰胺合成酶; NR: 硝酸还原酶; Fd-GOGAT: 谷氨酸合酶。不同字母表示P=0.05水平上差异显著。
表5 中籼水稻品种的叶片氮代谢酶活性的变化 Table 5 Changes of activities of main enzymes involved in nitrogen metabolism in leaves of mid-season indica rice cultivars
表6 中籼水稻品种生理特性与产量和氮肥利用效率的相关性 Table 6 Correlations of physiological characteristics of mid-season indica rice cultivars with grain yield and efficiency of applied nitrogen fertilizer
产量 Grain yield
农学利用率 Agronomic efficiency
吸收利用率 Recovery efficiency
生理利用率 Physiological efficiency
偏生产力 Partial factor productivity
生物产量Biomass
0.978* *
0.794* *
0.950* *
0.356
0.736* *
氮素积累量Nitrogen accumulation
0.865* *
0.572*
0.914* *
0.139
0.511
根系氧化力Root oxidation activity
0.942* *
0.912* *
0.931* *
0.569*
0.849* *
光合速率Net photosynthetic rate
0.931* *
0.903* *
0.894* *
0.631*
0.925* *
谷氨酰胺合成酶活性Glutamine synthetase activity
0.960* *
0.773* *
0.902* *
0.340
0.726* *
硝酸还原酶活性Nitrate reductase activity
0.957* *
0.858* *
0.929* *
0.511
0.830* *
谷氨酸合酶活性Fd-glutamate synthase activity
0.956* *
0.702*
0.894* *
0.249
0.655*
* and * * represent significant correlation at the 0.05 and 0.01 probability levels, respectively. * 和* * 分别表示在0.05和0.01水平上显著相关。
表6 中籼水稻品种生理特性与产量和氮肥利用效率的相关性 Table 6 Correlations of physiological characteristics of mid-season indica rice cultivars with grain yield and efficiency of applied nitrogen fertilizer
ZhangH, Xue YG, Wang ZQ, Yang JC, Zhang JH. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40[本文引用:1][JCR: 2.474]
崔玉亭, 程序, 韩纯儒, 李荣刚. 苏南太湖流域水稻经济生态适宜施氮量研究. 生态学报, 2000, 20: 658-662 Cui YT, ChengX, Han CR, Li RG. The economic and ecological satisfactory amount of nitrogen fertilizer using on rice in Tai Lake watershed. Acta Ecol Sin, 2000, 20: 658-662 (in Chinese with English abstract)[本文引用:1]
[9]
张耗, 谈桂露, 薛亚光, 王志琴, 刘立军, 杨建昌. 江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化. 作物学报, 2010, 36: 133-140 ZhangH, Tan GL, Xue YG, Wang ZQ, Liu LJ, Yang JC. Changes in grain yield and morphological and physiological characteristics during 60-year evolution of japonica rice cultivars in Jiangsu Province. Acta Agron Sin, 2010, 36: 133-140 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030 ZhangH, Huang ZH, Wang JC, Wang ZQ, Yang JC. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu Province. Acta Agron Sin, 2011, 37: 1020-1030 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
熊洁, 陈功磊, 王绍华, 丁艳锋. 江苏省不同年代典型粳稻品种的产量及株型差异. 南京农业大学学报, 2011, 34(5): 1-6 XiongJ, Chen GL, Wang SH, Ding YF. The difference in grain yield and plant type among typical japonica varieties in different years in Jiangsu Province. J Nanjing Agric Univ, 2011, 34(5): 1-6 (in Chinese with English abstract)[本文引用:1][CJCR: 0.916]
赵全志, 陈静蕊, 刘辉, 乔江方, 高桐梅, 杨海霞, 王继红. 水稻氮素同化关键酶活性与叶色变化的关系. 中国农业科学, 2008, 41: 2607-2616 Zhao QZ, Chen JR, LiuH, Qiao JF, Gao TM, Yang HX, Wang JH. Relationship between activities of nitrogen assimilation enzymes and leaf color of rice. Sci Agric Sin, 2008, 41: 2607-2616 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[17]
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 125-127 Li HS. The Principle and Technology of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000. pp 125-127(in Chinese)[本文引用:1]
Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY. Progress in research and development on hybrid rice: A super-domesticate in China. Ann Bot, 2007, 100: 959-966[本文引用:1][JCR: 0.657]
[20]
Peng SB, Khush GS, VirkP, Tang QY, Zou YB. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38[本文引用:1][JCR: 2.474]
[21]
洪植蕃, 林菲, 庄宝华. 两系杂交稻栽培生理特性: III. 结实特性与库源特征. 福建农学院学报, 1992, 21: 251-258 Hong ZF, LinF, Zhuang BH. Agro-physic-ecological characteristics of two-line rice hybrids: III. Spikelet fertility and sink-source feature. J Fujian Agric Coll, 19922, 21: 251-258[本文引用:1]
Peng SB, Cassman KG, Virmani SS, SheehyJ, Khush GS. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559[本文引用:1][JCR: 1.513]
[24]
Yang JC, Peng SB, Zhang ZJ, Wang ZQ, Romeo MV, Zhu QS. Grain and dry matter yields and partitioning of assimilate in japonica/indica hybrid rice. Crop Sci, 2002, 42: 766-772[本文引用:1][JCR: 1.513]
[25]
张福锁, 范明生. 主要粮食作物高产栽培与资源高效利用的基础研究. 北京: 中国农业出版社, 2013. pp 199-222 Zhang FS, Fan MS. The Basic Research of High Yield Cultivation and High-Efficiency of Utilizing Resources of the Main Food Crop. Beijing: China Agriculture Press, 2013. pp 199-222(in Chinese)[本文引用:1]
董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011, 39: 101-109 Dong GC, WangY, Yu XF, ZhouJ, PengB, Li JQ, TianH, ZhangY, Yuan QM, Wang YL. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Sci Agric Sin, 2011, 39: 101-109 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[28]
陈露. 江苏不同年代中粳稻品种对施氮量的响应及其生理机制. 扬州大学硕士学位论文, 江苏扬州, 2014 ChenL. Response of the Mid-season Japonica Rice Cultivars Applied at Different Decades in Jiangsu to Nitrogen Rates and Its Physiological Mechanism. MS Thesis of Yangzhou University, Yangzhou, China, 2014 (in Chinese with English abstract)[本文引用:2]
王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25: 802-807 Wang XC, Xiong SP, Ma XM, Zhang JJ, Wang ZQ. Effect of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in specialty wheat cultivars. Acta Ecol Sin, 2005, 25: 802-807 (in Chinese with English abstract)[本文引用:1]