关键词:小麦; 溶剂保持力; 分子标记; 关联分析 Association Analysis of Solvent Retention Capacity in Soft Wheat ZHANG Yong, ZHANG Xiao, GUO Jie, GAO De-Rong, ZHANG Bo-Qiao* Lixiahe Region Institute of Agricultural Sciences of Jiangsu Province / Key Laboratory of Biology and Genetic Improvement in Middle and Lower Yangtze Valley, Ministry of Agriculture, Yangzhou 225007, China
AbstractSolvent retention capacity (SRC) is an important index for identification and evaluation of soft wheat varieties. This study aimed at identifying SRC associated markers for marker-assisted selection. One hundred and seventy-six wheat varieties (lines) in different hardness types were screened with 236 pairs of SSR primers and their SRC values of lactic acid, water, sucrose, and sodium carbonate were evaluated in three growing seasons in Lixiahe, Jiangsu Province. The association analysis was carried out using the mixed-linear model (MLM). A total of 1340 fragments were amplified on the 236 SSR loci with an average of 5.5 alleles per locus. The average polymorphism information content was 0.4663. Twenty-eight loci were identified to be associated with lactic acid SRC (13), water SRC (7), sucrose SRC (6), and sodium carbonate SRC (2) at the significant level of P < 0.005, and a single locus explained 3.19%-21.84% of phenotypic variation. Marker gwm642 associated with WSRC was detected in three years. Some favorable alleles associated with SRCs were found, such as gwm642-A186, gwm642-A188, and gwm337-A178 for reducing water SRC, gwm337-A178 and gwm337-A186 for reducing sucrose SRC, and cfa2257-A129 for reducing sodium carbonate SRC. These results are informative for marker-assisted selection on SRC properties in wheat.
Keyword:Wheat; Solvent retention capacity (SRC); Molecular marker; Association analysis Show Figures Show Figures
表2 与溶剂保持力(SRC)关联的标记位点及其对表型变异的解释率 Table 2 Loci associated with solvent retention capacity (SRC) and their contributions to phenotypic variation
标记 Marker
染色体 Chr.
染色体位置 Position (cM)
P值 P-value
贡献率R2
E1
E2
E3
E1
E2
E3
乳酸SRC Lactic acid SRC
gwm337
1D
48
0.0012
0.1229
gwm642
1D
75
0.0031
0.0995
barc5
2A
63
0.0023
0.0676
wmc361
2B
101
0.0020
0.0820
cfa2234
3A
53
0.0045
0.0378
gwm285
3B
61
0.0034
0.1435
wmc418
3B
72
0.0042
0.0432
barc70
4A
71
0.0023
0.0743
gwm495
4B
36
1.50E-04
0.1451
wmc617
4B
59
0.0016
0.1143
cfd106
4D
30
0.0011
0.0618
gwm174
5D
57
0.0012
0.2184
gwm169
6A
83
0.0036
0.1136
碳酸钠SRC Sodium carbonate SRC
cfa2257
7A
92
5.62E-04
0.0571
gwm44
7D
78
0.0024
0.1398
蔗糖SRC Sucrose SRC
gwm337
1D
48
3.95E-04
0.1575
gwm455
2D
32
0.0025
0.0638
gwm513
4B
32
0.0034
0.0594
gwm292
5D
64
0.0031
0.1193
cfa2257
7A
92
0.0046
0.0422
gwm333
7B
65
0.0048
0.0963
水SRC Water SRC
gwm164
1A
56
0.0050
0.1305
gwm337
1D
48
0.0019
0.1370
gwm642
1D
75
0.0012
0.0018
6.54E-04
0.1292
0.0837
0.1442
wmc291
3B
90
7.53E-04
0.0594
gwm108
3B
94
0.0032
0.1006
wmc632
3B
143
0.0018
0.0319
barc172
7D
99
9.01E-06
0.1565
Chromosome position is according to the genetic map by Somers et al. [35]. E1: 2008-2009 growing season; E2: 2009-2010 growing season; E3: 2010-2011 growing season. The locus detected in multiple environments is in bold. 染色体位置参照Somers等[35]的遗传图谱。E1: 2008-2009年度; E2: 2009-2010年度; E3: 2010-2011年度。在多个环境中共同检测到的位点用加粗体显示。
表2 与溶剂保持力(SRC)关联的标记位点及其对表型变异的解释率 Table 2 Loci associated with solvent retention capacity (SRC) and their contributions to phenotypic variation
表3 与溶剂保持力(SRC)关联的2B染色体标记均方 Table 3 Mean square terms for association of solvent retention capacity (SRC) data with chromosome 2B markers
标记 Marker
位置 Position (cM)
水溶剂保持力 Water SRC
碳酸钠溶剂保持力 Sodium carbonate SRC
蔗糖溶剂保持力 Sucrose SRC
乳酸溶剂保持力 Lactic acid SRC
gwm429
40.5
20*
414* *
barc10
43.5
8*
698* * *
barc98
57.0
36* * *
101*
barc101
76.0
23* *
162* *
528*
Data are from Smith & Souza[26]. * , * * , and * * * indicate significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively. 数据来自Smith和Souza [26]。* 、* * 和* * * 分别表示在0.05、0.01和0.001水平显著。
表3 与溶剂保持力(SRC)关联的2B染色体标记均方 Table 3 Mean square terms for association of solvent retention capacity (SRC) data with chromosome 2B markers
附表 试验品种(系)的硬度值及分类 Supplementary table Hardness and the category of wheat varieties/lines tested
品种 Variety
硬度 Hardness
类型 Type
品种 Variety
硬度 Hardness
类型 Type
品种 Variety
硬度 Hardness
类型 Type
品种 Variety
硬度 Hardness
类型 Type
豫麦50
9
ES
扬辐麦3046
27
S
小偃5号
39
MS
普冰4302
65
H
京411
18
VS
鄂麦9号
27
S
扬85-85
43
MS
镇麦9号
65
H
浙丰2号
18
VS
扬麦9号
27
S
镇7630
43
MS
济麦21
66
H
徐州21
18
VS
农大139
27
S
小偃4号
43
MS
襄麦48
66
H
徐州20
18
VS
济南13
27
S
宁麦13
44
MS
淮麦16
66
H
矮孟牛
19
VS
烟农15
27
S
丰产3号
45
MH
碧玛4号
67
H
济南16
19
VS
宁麦8号
28
S
山农辐63
47
MH
鲁麦14
67
H
川麦41
19
VS
宁麦6号
28
S
鲁麦3号
48
MH
石麦12
67
H
川麦107
20
VS
泰山1号
28
S
豫麦54
49
MH
Halt
67
H
烟辐188
20
VS
宛7107
28
S
徐州25
52
MH
苏麦6号
68
H
选7
20
VS
ARGELATO
28
S
合春12
52
MH
周优102
68
H
臧2726
20
VS
鲁麦21
29
S
济南9号
52
MH
郑麦9023
68
H
陕7859
20
VS
临麦2号
29
S
苏麦5号
56
MH
绵阳30
68
H
南大2419
20
VS
晋麦52
29
S
徐州26
56
MH
安农8455
68
H
赣162
20
VS
川9920
30
S
小偃54
56
MH
鲁麦2号
69
H
豫麦18
20
VS
扬麦13
30
S
北京11
57
MH
济麦22
69
H
偃展4110
21
VS
郑州741
30
S
豫麦41
57
MH
普冰06-X4794
69
H
福绵2号
21
VS
晋麦33
30
S
高优503
58
MH
皖麦32
69
H
皖麦50
22
VS
扬7-2
30
S
石家庄8号
58
MH
皖麦47
70
H
扬麦15
22
VS
扬麦1号
30
S
石麦15
58
MH
川麦39
70
H
H35
22
VS
宁麦3号
30
S
淮麦17
58
MH
中优16
71
H
鲁麦15
22
VS
扬麦5号
30
S
镇麦5号
60
MH
扬麦4号
71
H
淮麦18
22
VS
扬麦14
31
S
扬麦17
60
MH
冀麦36
71
H
豫麦13
22
VS
甘83 (元45)
31
S
农大116
60
MH
K35
71
H
川农16
23
VS
徐州8785
31
S
长旱58
61
MH
安农2号
72
H
太空5号
23
VS
宁丰小麦
31
S
徐麦27
61
MH
普冰04-3507
73
H
川麦37
23
VS
扬麦3号
31
S
郑麦004
61
MH
烟农19
73
H
安农0721
23
VS
绵阳31
31
S
扬麦16
61
MH
宁麦10号
73
H
西农6028
23
VS
绵阳15
32
S
豫麦51
62
MH
宁麦11
74
H
扬麦19
23
VS
宁麦7号
33
S
徐州15
62
MH
淮麦21
74
H
皖麦18
24
VS
淮麦11
33
S
晋麦20
62
MH
济南17
74
H
豫麦49
24
VS
苏麦3号
33
S
河农822
63
MH
云麦27
75
H
宁麦9号
24
VS
豫麦2号
33
S
安农92484
63
MH
普冰4313
75
H
扬辐麦5号
24
VS
绵农4号
33
S
法展5号
63
MH
镇麦168
75
H
镇麦6号
24
VS
阿夫
34
S
陕麦150
63
MH
Jagger
75
H
扬辐麦2号
24
VS
镇7495
34
S
福繁17
63
MH
Norm
78
H
阿勃
25
S
皖麦48
35
MS
豫麦34
63
MH
陕229
78
H
绵阳26
25
S
新麦19
35
MS
淮麦20
64
MH
江东门
78
H
淮麦22
26
S
川育21526
35
MS
欧柔
64
MH
IWWSN15-22
80
H
NR98117-20S
26
S
襄麦5号
36
MS
咸农39
64
MH
浙农大85品8
80
H
鄂麦6号
26
S
郑引1号
36
MS
宁麦12
64
MH
Bobwhite
81
VH
陇春11
26
S
镇麦1号
37
MS
碧玛1号
64
MH
藁城8901
81
VH
湘麦10号
27
S
扬麦2号
38
MS
扬麦158
65
H
济麦20
83
VH
绵阳11
27
S
扬麦6号
38
MS
郑6辐
65
H
胜利麦
84
VH
硬度值为3年SKCS硬度仪检测数据的平均值, 依据AACC 55-31标准分类。ES: 极软; VS: 很软; S: 软; MS: 中软; MH: 中硬; H: 硬; VH: 很硬。 Hardness value was the average of three years tested by SKCS and the categorized according to AACC55-31 standard. ES: extremely soft; VS: very soft; S: soft; MS: medium soft; MH: medium hard; H: hard; VH: very hard.
附表 试验品种(系)的硬度值及分类 Supplementary table Hardness and the category of wheat varieties/lines tested
The authors have declared that no competing interests exist.
昝香存, 周桂英, 吴丽娜, 王爽, 胡学旭, 陆伟, 王步军. 我国小麦品质现状分析. , 2006, 26(6): 46-49Zan XC, Zhou GY, Wu LN, WangS, Hu XX, LuW, Wang BJ. Present status of wheat quality in China. , 2006, 26(6) : 46-49 (in Chinese with English abstract)[本文引用:1][CJCR: 1.007]
[2]
张伯桥, 张晓, 高德荣, 吕国锋, 朱冬梅, 马谈斌. 吹泡仪参数作为弱筋小麦品质育种选择指标的评价. , 2010, 30: 29-33Zhang BQ, ZhangX, Gao DR, Lü GF, Zhu DM, Ma TB. The value of alveograph parameters used as selection index in weak-gluten wheat breeding. , 2010, 30: 29-33 (in Chinese with English abstract)[本文引用:1][CJCR: 1.007]
[3]
何中虎, 林作楫, 王龙俊, 肖志敏, 万富世, 庄巧生. 中国小麦品质区划的研究. , 2002, 35: 359-364He ZH, Lin ZJ, Wang LJ, Xiao ZM, Wan FS, Zhuang QS. Classification on Chinese wheat regions based on quality. , 2002, 35: 359-364 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[4]
姚金保, 马鸿翔, 张平平, 姚国才, 杨学明, 张鹏. 中国弱筋小麦品质研究进展. , 2009, 25: 919-924Yao JB, Ma HX, Zhang PP, Yao GC, Yang XM, ZhangP. Progress on soft wheat quality research in China. , 2009, 25: 919-924 (in Chinese with English abstract)[本文引用:1][CJCR: 0.895]
[5]
张晓, 张勇, 高德荣, 别同德, 张伯桥. 中国弱筋小麦育种进展及生产现状. , 2012, 32: 184-189ZhangX, ZhangY, Gao DR, Bie TD, Zhang BQ. The Development and present of weak-gluten situation of its wheat breeding production. , 2012, 32: 184-189 (in Chinese with English abstract)[本文引用:1][CJCR: 1.007]
GainesC. Report of the AACC committee on soft wheat flour. Method 56-11, solvent retention capacity profile. , 2000, 45: 303-306[本文引用:3][JCR: 0.64]
[8]
KweonM, SladeL, LevineH. Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding: a review. , 2011, 88: 537-552[本文引用:]
[9]
SouzaE, Guttieri MJ. Sources of variation in the solvent retention capacity test of wheat flour. , 2003, 43: 1628-1633[本文引用:1][JCR: 1.513]
[10]
夏云祥, 马传喜, 司红起, 乔玉强, 何贤芳. 小麦溶剂保持力的基因型和环境及其互作效应分析. , 2008, 28: 448-451Xia YX, Ma CX, Si HQ, Qiao YQ, He XF. Effects of genotype, environment and genotype × environment interaction on solvent retention capacity in common wheat. , 2008, 28: 448-451 (in Chinese with English abstract)[本文引用:2][CJCR: 1.007]
[11]
SouzaE, BowenD, GannonD, O’BrienK, GuttieriM J. Solvent retention capacities of irrigated soft white spring wheat flours. , 2001, 41: 1054-1061[本文引用:1][JCR: 1.513]
[12]
Guttieri MJ, McLeanR, LanningS P, TalbertL E, SouzaE J. Assessing environmental influences on solvent retention capacities of two soft white spring wheat cultivars. , 2002, 79: 880-884[本文引用:1][JCR: 1.251]
[13]
张岐军, 何中虎, 闫俊, 钱森和, 张艳, 葛秀秀, 王继忠. 溶剂保持力在软质小麦品质评价中的应用. , 2004, 24(4): 140-142Zhang QJ, He ZH, YanJ, Qian SH, ZhangY, Ge XX, Wang JZ. Application of Solvent Retention Capacity in Soft Wheat Quality Evaluation. , 2004, 24(4): 140-142 (in Chinese with English abstract)[本文引用:2][CJCR: 1.007]
姚金保, SouzaE, 马鸿翔, 张平平, 姚国才, 杨学明, 任丽娟, 张鹏. 软红冬小麦品质性状与饼干直径的关系. , 2010, 36: 695-700Yao JB, SouzaE, Ma HX, Zhang PP, Yao GC, Yang XM, Ren LJ, ZhangP. Relationship between quality traits of soft red winter wheat and cookie diameter. , 2010, 36: 695-700 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[16]
PashaI, Anjum FM, ButtM. Genotypic variation of spring wheats for solvent retention capacities in relation to end-use quality. , 2009, 42: 418-423[本文引用:1][JCR: 2.546]
[17]
Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants. , 2003, 54: 357-374[本文引用:1][JCR: 25.962]
[18]
Thornsberry JM, Goodman MM, DoebleyJ, KresovichS, NielsenD, Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. , 2001, 28: 286-289[本文引用:1][JCR: 35.209]
[19]
Flint-Garcia SA, Thuillet AC, YuJ, PressoirG, Romero SM, Mitchell SE, DoebleyJ, KresovichS, Goodman MM, Buckler ES. Maize association population: a high-resolution platform for quantitative trait locus dissection. , 2005, 44: 1054-1064[本文引用:1][JCR: 6.582]
[20]
Gupta PK, RustgiS, Kulwal PL. Linkage disequilibrium and association studies in higher plants: present status and future prospects. , 2005, 57: 461-485[本文引用:1][JCR: 3.518]
[21]
BryantR, ProctorA, HawkridgeM, JacksonA, YeaterK, CounceP, YanW, McClungA, FjellstromR. Genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. , 2011, 139: 1383-1398[本文引用:1][JCR: 1.681]
[22]
张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. , 2014, 40: 1-6Zhang HX, Weng JF, Zhang XC, Liu CL, Yong HJ, Hao ZF, Li XH, Genome-wide association analysis of kernel row number in maize. , 2014, 40: 1-6 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[23]
NiedzielaA, Bednarek PT, CichyH, BudzianowskiG, KilianA, AniolA. Aluminum tolerance association mapping in triticale. , 2012, 13: 67[本文引用:1][JCR: 4.397]
[24]
WangL, GeH, HaoC, DongY, ZhangX. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. , 2012, 7: e29432[本文引用:1][JCR: 3.73]
[25]
Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, SiritungaD, Zhu JQ, GendreF, RouéC, VérelA, Sorrells ME. Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. , 2001, 41: 1275-1285[本文引用:1][JCR: 1.513]
[26]
SmithN, SouzaE, SnellerC, SorrellsM, GriffeyC, OhmH, Van-SanfordD, Guttieri MJ, SturbaumA K. Association analysis of soft wheat quality traits in eastern US soft winter wheat. 2008[本文引用:3]
[27]
Bettge AD, Morris CF, Demacon VL, Kidwell KK. Adaption of AACC method 56-11, Solvent retention capacity, for use as an early generation selection for cultivar development. , 2002, 79: 670-674[本文引用:1][JCR: 1.251]
[28]
周淼平, 吴宏亚, 余桂红, 张旭, 马鸿翔. 小麦溶剂保持力微量测定方法的建立. , 2007, 23: 270-275Zhou MP, Wu HY, Yu GH, ZhangX, Ma HX. Microdetermination of solvent retention capacity in wheat. , 2007, 23: 270-275 (in Chinese with English abstract)[本文引用:1][CJCR: 0.895]
[29]
Van der BeekJ G, VerkerkR, ZabelP, LindhoutP. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. , 1992, 84: 106-112[本文引用:]
[30]
Knapp SJ, Stroup WW, Ross WM. Exact confidence intervals for heritability on a progeny mean basis. , 1985, 25: 192-194[本文引用:1][JCR: 1.513]
[31]
LiuK, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. , 2005, 21: 2128-2129[本文引用:1][JCR: 5.323]
[32]
Pritchard JK, StephensM, DonnellyP. Inference of population structure using multilocus genotype data. , 2000, 155: 945-959[本文引用:1][JCR: 4.389]
[33]
EvannoG, RegnautS, GoudetJ. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. , 2005, 14: 2611-2620[本文引用:1][JCR: 6.275]
[34]
YuJ, PressoirG, Briggs WH, Bi IV, YamasakiM, DoebleyJ, McMullenM D, GautB S, NielsenD M, Holland J B, KresovichS, BucklerE S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. , 2006, 38: 203-208[本文引用:1][JCR: 35.209]
[35]
Somers DJ, IsaacP, EdwardsK. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L. ). , 2004, 109: 1105-1114[本文引用:1][JCR: 3.658]
[36]
张勇, 金艳, 张伯桥, 张晓, 徐亮, 徐扬, 徐辰武, 程顺和. 不同来源品种在长江下游麦区的溶剂保持力特性及相关分析. , 2012, 32: 750-756ZhangY, JinY, Zhang BQ, ZhangX, XuL, XuY, Xu CW, Cheng SH. Characteristics of solvent retention capacity (SRC) of different varieties planted in the low Yangtze wheat region and analysis on their correlations. , 2012, 32: 750-756 (in Chinese with English abstract)[本文引用:2][CJCR: 1.007]
[37]
张勇, 金艳, 张伯桥, 张晓, 徐亮, 徐扬, 程顺和, 徐辰武. 我国不同麦区小麦品种的面粉溶剂保持力. , 2012, 38: 2131-2137ZhangY, JinY, Zhang BQ, ZhangX, XuL, XuY, Cheng SH, Xu CW. Solvent retention capacities of varieties from different wheat regions in China. , 2012, 38: 2131-2137 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[38]
马庆. 小麦溶剂保持力的QTL定位及其与加工品质的关系, 扬州: 扬州大学硕士学位论文, , 2009MaQ. QTL Mapping for Common Wheat SRC and Relationship with Processing Quality. , 2009 (in Chinese with English abstract)[本文引用:1]