摘要在稻麦两熟制条件下, 以扬麦20为材料, 通过基本苗和氮肥施用量、施用时期及比例的调控, 建立不同产量水平群体, 研究籽粒产量9000 kg hm-2群体钾素积累、分配与利用特性。结果表明, 籽粒产量≥9000 kg hm-2 (超高产)群体钾素吸收高峰期出现在拔节至开花期, 吸收的钾素占一生吸收钾素的52%~68%; 开花期和成熟期钾素积累量均极显著高于<9000 kg hm-2 (高产)群体。成熟期叶片、茎鞘、颖壳+穗轴和籽粒钾素积累量与籽粒产量均呈极显著线性正相关; 花后茎鞘钾素转运量与产量呈极显著线性正相关, 颖壳+穗轴钾素转运量与产量呈极显著线性负相关。超高产群体开花期和成熟期钾素积累量分别为430~450 kg hm-2和366~408 kg hm-2; 成熟期钾素积累量, 茎鞘中最高, 为244~269 kg hm-2, 其次是叶片和颖壳+穗轴, 分别为46~49 kg hm-2和40~46 kg hm-2, 籽粒中仅为35~46 kg hm-2; 花后茎鞘钾素转出量为46~52 kg hm-2, 颖壳+穗轴钾素积累量为9~17 kg hm-2。超高产群体每100 kg籽粒的吸钾量需达4.57~4.87 kg, 此时的钾素利用效率为20.56~22.02 kg kg-1, 钾收获指数为0.095~0.112。
关键词:稻茬小麦; 高产; 钾素积累、分配与利用 Potassium Accumulation, Distribution, and Utilization in Wheat with Yield Potential of 9000 kg ha-1 in Rice-Wheat Rotation System DING Jin-Feng, ZI Yan, YANG Jia-Feng, PAN Ting, FENG Chao-Nian, ZHU Xin-Kai, LI Chun-Yan, PENG Yong-Xin, GUO Wen-Shan* College of Agriculture, Yangzhou University / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture / Wheat Research Institute, Yangzhou University, Yangzhou 225009, China Fund: AbstractDifferent populations of wheat cultivar Yangmai 20 were established in the rice-wheat rotation system by managing plant density and nitrogen application amount, timing and splitting ratio in 2010-2011 and 2011-2012 growing seasons. These populations were divided into high yield (HY, <9000 kg ha-1) and super high yield (SHY, ≥9000 kg ha-1) groups. Characteristics of potassium (K) uptake and utilization in both population groups were compared to guide high-yield wheat production in the rice-wheat rotation system. In SHY population, K absorption from elongation to anthesis was greater than that of other growing periods, which accounted for 52-68% of the total K uptake. The K accumulation amounts at anthesis and maturity were significantly higher in SHY population than in HY population. At maturity, K accumulation amount in leaf, stem, rachis + hull, and grain was positively correlated with grain yield. After anthesis, K translocation amount from stem to grain was positively correlated with grain yield, whereas K translocation amount from rachis + hull to grain was negatively correlated with grain yield. In SHY population, K accumulation amount was 430-450 kg ha-1 at anthesis and 366-408 kg ha-1 at maturity; K accumulation amounts at maturity were 46-49 kg ha-1 in leaf, 244-269 kg ha-1 in stem, 40-46 kg ha-1 in rachis + hull, and 35-46 kg ha-1 in grain; K translocation amount at anthesis from stem to grain was 46-52 kg ha-1; and K accumulation amount in rachis + hull from anthesis to maturity was 9-17 kg ha-1. For yielding grain higher than 9000 kg ha-1, winter wheat in the rice-wheat rotation system required 4.57-4.87 kg K nutrient to produce 100 kg grain. Meanwhile, the K use efficiency and K harvest index were 20.56-22.02 kg kg-1 and 0.095-0.112, respectively.
Keyword:Wheat in wheat-rice rotation system; High-yield production; Accumulation; distribution and utilization of potassium Show Figures Show Figures
0 引言钾素参与作物水分代谢、光合作用、离子的吸收转运及酶活化等生理过程, 是提高作物产量和品质的关键营养元素之一[ 1]。小麦对钾素吸收利用的规律及营养诊断指标, 可为选育品种和栽培调控提供参考。小麦对钾素的吸收、积累、分配与利用特性因品种[ 2, 3]、土壤类型[ 4, 5]、产量[ 6, 7]等而异。在黄淮麦区, 旱茬小麦可达到9000 kg hm-2的高产水平。研究表明, 冬小麦8693 kg hm-2产量水平下, 植株对钾的吸收强度随小麦生长发育进程推移而增加, 拔节到挑旗阶段达最高峰, 挑旗以后植株体内钾的绝对含量明显下降[ 8]; 9000 kg hm-2的高产小麦, 植株对钾素吸收的最大速率期出现在返青至孕穗末期[ 9]。9000 kg hm-2高产条件下, 每公顷氧化钾吸收量及生产100 kg籽粒所需氧化钾的量均高于一般高产麦田[ 10]; 小麦植株对钾的积累整个生育期呈“S”型动态变化, 扬花期积累量达最大值, 较一般高产小麦在拔节至孕穗末期对钾的吸收数量大, 持续时间长[ 7]。长江中下游地区多为稻-麦轮作体系, 对稻茬小麦钾素吸收与利用特性的研究多以7500 kg hm-2产量水平的群体为对象[ 6], 而对9000 kg hm-2以上的高产小麦群体的钾素吸收、积累、分配与利用特性缺乏了解。本试验在长江中下游稻麦两熟制条件下, 以中筋小麦扬麦20为材料, 通过不同基本苗、氮肥施用量、施用时期和比例调控建立不同产量水平群体, 分析其钾素积累动态、钾素吸收与利用差异及其与籽粒产量的关系, 探讨稻茬小麦9000 kg hm-2高产群体的钾素积累、分配与利用特性, 为稻茬小麦大面积高产及高产栽培提供参考依据。 1 材料与方法1.1 试验地点与供试品种扬州大学江苏省作物遗传生理重点实验室试验场(119°42′ N, 32°39′ E)属亚热带湿润气候区, 年平均温度13.2~16.0℃、降雨量800~1200 mm、日照2000~2600 h、无霜期220~240 d。试验年度气候条件见表1。试验田前茬为水稻(产量10 000 kg hm-2), 土壤为轻壤土。2010—2011年度小麦播种前0~20 cm土层含水解氮65.81 mg kg-1、速效磷45.88 mg kg-1、速效钾101.98 mg kg-1、有机质15.5 g kg-1; 2011—2012年度小麦播种前0~20 cm土层含水解氮65.56 mg kg-1、速效磷46.23 mg kg-1、速效钾102.05 mg kg-1、有机质15.9 g kg-1。供试品种为中筋小麦扬麦20, 由江苏里下河地区农业科学研究所提供。 表1 Table 1 表1(Table 1)
表1 小麦不同生育阶段的积温、日照和降雨 Table 1 Accumulated temperatures, sunshine, and precipitation during various phases of wheat growth
2 结果与分析2.1 不同处理籽粒产量方差分析表明, 影响籽粒产量的基本苗、施氮量、施氮比例及追氮时期, 处理间存在极显著差异, 基本苗×施氮量、基本苗×施氮量×施氮比例对产量的互作效应均达极显著水平, 且对产量的互作效应在年度间表现有所差异(表2)。各处理2010—2011年度的籽粒产量为7846.16~9568.60 kg hm-2, 2011—2012年的产量为6573.19~9172.59 kg hm-2。2010—2011年度共有4个处理达到超高产水平, 而2011—2012年度仅有1个处理产量高于9000 kg hm-2 (表3)。综合两年结果, 在较高密度(225万株 hm-2)和氮肥适当后移(3∶1∶3∶3)条件下, 且穗肥不晚于孕穗期, 可以达到或有望达到超高产水平; 而高施氮量(262.5 kg hm-2)的高产效果不明显。 表2 Table 2 表2(Table 2)
表2 小麦产量在不同处理下的方差分析 Table 2 Analysis of variance for grain yield of wheat among different treatments
变异来源 Source of variation
自由度 df
方差 SS
均方 MS
F值 F-value
年度 Year (Y)
1
12529638.59
12529638.59
457.10**
基本苗 Plant density (D)
1
833508.50
833508.50
30.41**
施氮量 Nitrogen amount (N)
1
5148804.36
5148804.36
187.84**
D×N
1
614827.71
614827.71
22.43**
Y×N
1
6019565.48
6019565.48
219.6**
Y×D×N
1
509811.02
509811.02
18.60**
施氮比例 Nitrogen split ratio (S)
1
5011145.30
5011145.30
182.81**
D×S
1
394913.24
394913.24
14.41**
N×S
1
3462318.50
3462318.50
126.31**
D×N×S
1
208905.88
208905.88
7.62**
Y×S
1
106590.15
106590.15
3.89*
Y×D×S
1
223029.06
223029.06
8.14**
Y×N×S
1
381715.37
381715.37
13.93**
Y×D×N×S
1
286823.20
286823.20
10.46**
追氮时期 Nitrogen topdressing time (T)
3
3296464.98
1098821.66
40.09**
D×T
3
852889.41
284296.47
10.37**
N×T
3
6334869.33
2111623.11
77.04**
S×T
3
726055.77
242018.59
8.83**
Y×T
3
3290346.93
1096782.31
40.01**
Y×D×T
3
777701.22
259233.74
9.46**
Y×N×T
3
8738480.55
2912826.85
106.26**
Y×S×T
3
403190.55
134396.85
4.90**
Y×D×N×T
3
1008426.57
336142.19
12.26**
总和 Total
191
65725444.02
* P < 0.05;** P < 0.01.
表2 小麦产量在不同处理下的方差分析 Table 2 Analysis of variance for grain yield of wheat among different treatments
表3 Table 3 表3(Table 3)
表3 不同处理下小麦籽粒产量 Table 3 Grain yield of wheat under different treatments (kg hm-2)
氮肥管理 Nitrogen management
2010-2011
2011-2012
D1
D2
D1
D2
LN
S3133
T1
8423.37 cde
9100.48 bc
8366.95 d
9172.59 a
T2
8617.03 bcd
8719.67 cde
8481.95 bc
8873.59 b
T3
8396.15 cde
8527.49 def
7995.05 f
8603.64 c
T4
8355.45 cde
8454.87 def
7893.12 gh
8289.76 ef
S5122
T1
8604.52 bcd
8533.89 def
8551.76 b
8786.36 b
T2
8640.47 bc
8675.90 cde
8510.92 b
8612.49 c
T3
8668.61 bc
8869.46 cd
8103.19 e
8450.17 d
T4
8418.63 cde
8083.18 f
7848.10 h
8040.97 h
HN
S3133
T1
8844.83 b
9568.60 a
7376.66 j
6908.21 k
T2
9480.69 a
9345.30 ab
7716.87 i
8067.17 h
T3
8429.65 cde
8871.06 cd
8642.80 a
8377.28 de
T4
8569.43 bcd
8559.85 def
8429.78 cd
8139.90 gh
S5122
T1
7846.16 f
8272.33 ef
6573.19 l
6722.04 l
T2
8872.63 b
8327.86 def
7249.70 k
7693.48 i
T3
8227.6 def
8094.41 f
8104.37 e
8222.11 fg
T4
8147.09 ef
8057.49 f
7934.39 fg
7516.34 j
D1 = 150万株 hm-2, D2 = 225万株 hm-2; LN = 纯氮210.0 kg hm-2, HN = 纯氮262.5 kg hm-2; S3133 = 基肥:壮蘖肥:拔节肥:穗肥3:1:3:3, S5122 =基肥:壮蘖肥:拔节肥:穗肥5:1:2:2; T1~T4 = 穗肥施用时期为剑叶露尖、孕穗期、抽穗期和开花期。数据后不同字母表示不同氮肥处理间存在显著差异( P < 0.05)。 D1 = 150 × 10-4 plants hm-2, D2 = 225 × 10-4plants hm-2; LN = pure N of 210.0 kg hm-2, HN = pure N of 262.5 kg hm-2; S3133 = N fertilizer split ratio of 3 (basal): 1 (tillering): 3 (elongation): 3 (panicle development), S5122 = N fertilizer split ratio of 5 (basal): 1 (tillering): 2 (elongation): 2 (panicle development); T1-T4 = the last part of N fertilizer applied at flag leaf emergence, booting, heading, and anthesis stage, respectively. Significant difference among treatments of nitrogen management is indicated with different letters after data ( P < 0.05).
表3 不同处理下小麦籽粒产量 Table 3 Grain yield of wheat under different treatments (kg hm-2)
2.2 不同产量水平群体钾素吸收积累差异2.2.1 钾素积累量变化动态 扬麦20超高产和高产群体整个生育期的钾素积累量变化均呈“S”型曲线, 即出苗至返青期缓慢积累, 返青期至开花期快速积累, 开花期至成熟期少量流失(图1)。两年度不同群体间钾素积累量在越冬始期、返青期、拔节期差异均不显著; 超高产群体开花期、成熟期钾素积累量极显著高于高产群体, 2010—2011年度分别平均为445.18 kg hm-2和389.46 kg hm-2, 较高产群体分别高12%和16%。 图1 Fig. 1
图1 不同产量水平群体钾素积累动态EM: 出苗期; BW: 越冬始期; GT: 返青期; EL: 拔节期; AN: 开花期; MT: 成熟期。 ns和**分别表示HY和SHY群体间差异不显著( P > 0.05)和差异极显著( P < 0.01)。Fig. 1 Dynamics of potassium accumulation amount in different yield level populationsEM: emergence; BW: beginning of winter; GT: green-turning; EL: elongation; AN: anthesis; MT: maturity. “ns” and “**” indicate no significant ( P > 0.05) and extremely significant difference ( P < 0.01) between HY and SHY populations, respectively.
两年度开花期、成熟期钾素积累量与产量均呈极显著线性正相关(图2)。越冬始期、返青期、拔节期钾素积累量2011—2012年度极显著高于2010—2011年度, 开花期、成熟期钾素积累量年度间差异不显著。综合两年度结果, 超高产群体钾素积累量在开花期和成熟期分别为430~450 kg hm-2和366~408 kg hm-2, 说明超高产群体在拔节期前应有较高的钾素积累量, 但关键是增加开花期和成熟期的钾素积累量。 图2 Fig. 2
图3 不同产量水平群体不同生育阶段钾素积累量及吸收比例差异EM: 出苗期; BW: 越冬始期; GT: 返青期; EL: 拔节期; AN: 开花期; MT: 成熟期。ns表示HY和SHY群体间差异不显著( P > 0.05)。Fig. 3 Differences of potassium accumulation amount and percentage under different yield level populations during various growing phasesEM: emergence; BW: beginning of winter; GT: green-turning; EL: elongation; AN: anthesis; MT: maturity. “ns” indicates no significant difference ( P > 0.05) between HY and SHY populations
图5 花后不同营养器官钾素的转运量与籽粒产量的关系Fig. 5 Relationship between potassium translocation amount (KTA) from different organs to grains and grain yield of wheat
不同群体花后叶片和茎鞘钾素均呈输出状态, 穗轴+颖壳钾素呈积累状态。两年度不同群体间花后叶片钾素转运量差异不显著; 超高产群体花后茎鞘和穗轴+颖壳钾素转运量均显著高于高产群体, 2010—2011年度平均为47.66 kg hm-2和-12.80 kg hm-2, 较高产群体分别高38%和57%。两年度花后叶片钾素转运量与产量均呈散点分布; 花后茎鞘钾素转运量与产量均呈极显著线性正相关, 花后颖壳+穗轴钾素转运量与产量呈极显著线性负相关(图5)。2011—2012年度花后茎鞘钾素转运量显著低于2010—2011年度, 花后叶片及穗轴+颖壳钾素转运量年度间差异不显著。综合两年度试验结果表明, 超高产群体花后总的营养器官、叶片、茎鞘和颖壳+穗轴钾素转运量分别为91~100、55~63、46~ 52和9~17 kg hm-2。 2.4 不同产量水平群体100 kg籽粒吸钾量、钾素利用效率、钾收获指数的差异两年度不同群体100 kg籽粒吸钾量、钾素利用效率和钾素收获指数分别为4.11~5.13 kg、19.49~ 23.21 kg kg-1和0.080~0.113, 其中超高产群体分别变动在4.54~4.87 kg、20.56~22.02 kg kg-1和0.095~ 0.112, 与高产群体差异均不显著。100 kg籽粒吸钾量2011—2012年度显著高于2010—2012年度, 钾素利用效率及钾素收获指数2011—2012年度显著低于2010—2012年度。
3 讨论3.1 稻茬小麦籽粒产量9000 kg hm-2高产群体钾素吸收、积累与分配特性 小麦产量的形成需要在生育各阶段吸收、积累与产量相适应的营养物质, 并合理分配于各营养器 官中, 以满足各器官的生理代谢活动。韩燕来等[ 9]研究发现, 9000 kg hm-2高产旱茬小麦整个生育期钾素积累呈单峰曲线变化, 以扬花期积累量最大, 达518.55 kg hm-2, 花后钾素有所外排; 余松烈等[ 8]试验表明, 8693 kg hm-2高产旱茬小麦拔节至挑旗阶段为钾素吸收强度高峰期, 平均达2.66 kg hm-2 d-1, 成熟期钾素累积吸收量达353.85 kg hm-2; 于振文等[ 10]指出, 黄淮麦区9000 kg hm-2高产麦田每公顷吸收K2O的数量高于一般高产麦田, 达276~316 kg hm-2; 杜世州等[ 13]研究表明9000 kg hm-2高产旱茬小麦钾吸收量为224.69~305.28 kg hm-2。可见, 小麦一生钾素总吸收量因品种、生态环境、土壤类型等而异, 而9000 kg hm-2高产群体钾素吸收总量较一般高产群体进一步增加的结论基本一致。凌启鸿等[ 7]综合分析江苏省不同生态区研究结果, 认为产量7500 kg hm-2的小麦群体, 需吸K2O 240 kg hm-2(210~300 kg hm-2), 扬州地区产量9000 kg hm-2的小麦群体, 约需吸K2O 430 kg hm-2。本试验以扬麦20为材料, 通过基本苗和氮肥运筹(氮肥施用量、施用时期和比例)调控建立稻茬小麦不同产量水平群体, 受2010—2012小麦生长季不同气候条件, 尤其是降雨的影响, 年度间不同处理下产量有所差异; 稻茬小麦群体整个生育期钾素积累量呈“S”型动态变化, 超高产群体钾素吸收高峰期出现在拔节至开花期, 吸收的钾素占一生吸收钾素的52%~68%; 开花期和成熟期钾素积累量均极显著高于高产群体。这一结果与前人研究结果基本一致。超高产群体开花期和成熟期钾素积累量分别为430~450 kg hm-2和366~408 kg hm-2。周玲等[ 14]认为, 较低的花后钾素流失量是旱地冬小麦品种高产的重要原因, 而本研究结果与此不尽相同, 是否由于长江中下游麦区小麦生育后期降雨频繁, 钾素被水淋失量大所致, 尚需进一步研究。 韩燕来等[ 9]研究认为, 高产旱茬小麦孕穗末期后钾素的分配重心在茎秆, 花后转移至籽粒; 周玲等[ 14]认为旱地高产冬小麦品种籽粒对钾的保持能力较高。本试验结果表明, 稻茬小麦成熟期叶片、茎鞘、颖壳+穗轴和籽粒钾素积累量与籽粒产量均呈极显著线性正相关, 超高产群体分别为46~49、244~269、40~46和35~46 kg hm-2。对其他高产小麦品种的钾素吸收规律尚待研究。 3.2 稻茬小麦籽粒产量9000 kg hm-2高产群体钾素转运特性 周玲等[ 14]认为旱地高产冬小麦品种花后钾素转移量无明显优势; 韩燕来等[ 9]研究认为9000 kg hm-2高产旱茬小麦到收获时叶+叶鞘和茎中转移出的钾素分别占最大积累量的60.2%和24.9%, 颖壳+穗轴在孕穗末期即开始转移, 籽粒是钾素的输入器官。本试验结果表明, 稻茬小麦不同产量水平群体间花后总的营养器官及叶片钾素转运量差异不显著。花后茎鞘钾素转运量与产量呈极显著线性正相关, 颖壳+穗轴钾素转运量与产量呈极显著线性负相关。超高产群体花后茎鞘钾素转出量为46~52 kg hm-2, 颖壳+穗轴钾素积累量为9~17 kg hm-2。 3.3 稻茬小麦籽粒产量9000 kg hm-2高产群体钾素利用特性 营养元素的利用效率反映了作物利用吸收的营 养元素生产最大物质量或产量的能力[ 15]。Damon等[ 16]认为钾高效品种更具持续增产潜力; Pettigrew等[ 1]认为增加钾素的吸收或提高钾素利用效率均可以有效提高作物产量; 国内试验表明, 9000 kg hm-2高产旱茬小麦100 kg籽粒吸钾量为2.89~3.89 kg[ 9, 10, 17], 钾收获指数为0.122~0.135[ 10, 17]; 凌启鸿等[ 6]认为, 7500~9300 kg hm-2高产群体100 kg籽粒吸钾量为2.77~4.62 kg, 且表现出产量越高, 吸钾量越大; 赵俊晔等[ 18]试验表明, 黄淮麦区8000 kg hm-2高产旱茬小麦钾素利用效率为22.26~31.08 kg kg-1, 钾收获指数为0.119~0.132。在本试验中, 稻茬小麦超高产群体100 kg籽粒吸钾量为4.57~4.87 kg, 钾素利用效率为20.56~22.02 kg kg-1, 钾收获指数为0.095~ 0.112, 与高产群体差异均不显著。说明与黄淮麦区旱茬小麦相比, 稻茬小麦钾素吸收效率较高, 但利用效率较低, 关于稻茬小麦超高产群体如何在保证高钾素吸收效率的基础上提高钾素利用效率尚待研究。
4 结论稻茬小麦超高产群体与高产群体相比, 拔节期前钾素积累量差异不显著, 拔节至开花期、开花期及成熟期钾素积累量较高; 成熟期茎鞘及籽粒钾素积累量较高; 花后总的营养器官钾素转运量差异不显著, 花后茎秆钾素转运量较高; 100 kg籽粒吸钾量、钾素利用效率及收获指数差异不显著。9000 kg hm-2以上超高产群体在开花期和成熟期的钾素积累量分别为430~450 kg hm-2和366~408 kg hm-2, 成熟期茎鞘和籽粒钾素积累量分别为244~269 kg hm-2和35~ 46 kg hm-2, 花后茎鞘钾素转出量为46~52 kg hm-2。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
PettigrewW T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670-681[本文引用:2][JCR: 6.555]
[2]
DamonP M, MaQ F, RengelZ. Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop Pasture Sci, 2011, 62: 550-555[本文引用:1][JCR: 1.133]
[3]
ZhangG P, ChenJ X, EshetuA T. Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr Cycl Agroecosyst, 1999, 54: 41-48[本文引用:2]
[4]
Wong M T F, CornerR J, CookS E. A decision support system for mapping the site-specific potassium requirement of wheat in the field. Aust J Exp Agric, 2001, 41: 655-661[本文引用:1][JCR: 1.621]
[5]
RoshaniaG A, NarayanasamybG. Effects of potassium on temporal growth of root and shoot of wheat and its uptake in different soils. Int J Plant Prod, 2010, 4: 25-32[本文引用:1][JCR: 1.145]
[6]
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp271-276LinQ H. Crop Population Quality. Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp271-276(in Chinese)[本文引用:3]
[7]
谭金芳, 介晓磊, 韩燕来, 郑义. 潮土区超高产麦田供钾特点与小麦钾素营养研究. 麦类作物学报, 2001, 21(1): 45-50TanJ F, JieX L, HanY L, ZhengY. Study on potassium supplying properties in super-high yield wheat field in Chao soil region and potassium nutrition characteristics of wheat. J Triticeae Crops, 2001, 21(1): 45-50 (in Chinese with English abstract)[本文引用:3]
[8]
余松烈, 亓新华, 刘希运. 高产冬小麦对三要素的吸收和供应特点的研究. 土壤肥料, 1981, (1): 31-34YuS L, QiX H, LiuX Y. Studies on absorption and supply characteristics of three elements in high-yield winter wheat. Soils Fert, 1981, (1): 31-34 (in Chinese)[本文引用:2]
[9]
韩燕来, 介晓磊, 谭金芳, 郭天财, 朱云集, 王晨阳, 夏国军, 刘征. 超高产冬小麦氮麟钾吸收、分配与运转规律的研究. 作物学报, 1998, 24: 908-915HanY L, JieX L, TangJ F, GuoT C, ZhuY J, WangC Y, XiaG J, LiuZ. Studies on absorption, distribution and translocation of N, P and K of super-high yield winter wheat. Acta Agron Sin, 1998, 24: 908-915 (in Chinese with English abstract)[本文引用:5][CJCR: 1.667]
[10]
于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28: 577-585YuZ W, TianQ Z, PanQ M, YueS S, WangD, DuanZ L, DuanL L, WangZ J, NiuY S. Theory and practice on cultication of super high yield of winter in the wheat fields of Yellow River and Huaihe River districts. Acta Agron Sin, 2002, 28: 577-585 (in Chinese with English abstract)[本文引用:4][CJCR: 1.667]
[11]
王强盛, 甄若宏, 丁艳锋, 吉忠军, 曹卫星, 黄丕生. 钾肥用量对优质粳稻钾素积累利用及稻米品质的影响. 中国农业科学, 2004, 37: 1444-1450WangQ S, ZhenR H, DingY F, JiZ J, CaoW X, HuangP S. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality of japonica rice. Sci Agric Sin, 2004, 37: 1444-1450 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[12]
ZhangH M, YangX Y, HeX H, XuM G, HuangS M, LiuH, WangB R. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China. Pedosphere, 2011, 21: 154-163[本文引用:3][JCR: 1.232][CJCR: 0.8103]
[13]
杜世州, 曹承富, 张耀兰, 赵竹, 乔玉强, 刘永华, 张四华. 氮素运筹对淮北地区超高产小麦养分吸收利用的影响. 植物营养与肥料学报, 2011, 17: 9-15DuS Z, CaoC F, ZhangY L, ZhaoZ, QiaoY Q, LiuY H, ZhangS H. Effects of nitrogen application on nitrogen absorption, utilization in super-high-yielding wheat in Huaibei region. Plant Nutr Fert Sci, 2011, 17: 9-15 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[14]
周玲, 赵护兵, 王朝辉, 孟晓瑜, 王建伟, 陈辉林, 李小涵. 不同产量水平旱地冬小麦品种氮磷钾养分积累与转移的差异分析. 中国生态农业学报, 2011, 19: 318-325ZhouL, ZhaoH B, WangZ H, MengX Y, WangJ W, ChenH L, LiX H. NPK accumulation and translocation in dryland winter wheat cultivars with different yields. Chin J Eco-Agric, 2011, 19: 318-325 (in Chinese with English abstract)[本文引用:3][CJCR: 0.795]
[15]
SwiaderaJ M, ChyanaY, FreijiaF G. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. J Plant Nutr, 1994, 17: 1687-1699[本文引用:1][JCR: 0.526]
[16]
DamonP M, RengelZ. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust J Agric Res, 2007, 58: 816-825[本文引用:1][JCR: 1.328]
[17]
于振文, 梁晓芳, 李延奇, 王雪. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响. 应用生态学报, 2007, 18: 69-74YuZ W, LiangX F, LiY Q, WangX. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat. Chin J Appl Ecol, 2007, 18: 69-74 (in Chinese with English abstract)[本文引用:2][CJCR: 1.742]
[18]
赵俊晔, 于振文, 李延奇, 王雪. 施氮量对小麦氮磷钾养分吸收利用和产量的影响. 西北植物学报, 2006, 26: 98-103ZhaoJ Y, YuZ W, LiY Q, WangX. Effects of different nitrogen rates of fertilization on nitrogen, phosphorous and potassium uptakes and utilizations as well as kernel yield of wheat under high yield circumstances. Bot Boreali-Occident Sin, 2006, 26: 98-103 (in Chinese with English abstract)[本文引用:1]