删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于速度预测的导引律剩余时间估计*

本站小编 Free考研考试/2021-12-25

近年来,协同制导问题引起了越来越多****的研究兴趣。文献[1-2]研究了多枚反舰导弹的协同制导问题,以期有效突破近程防御武器系统。李新三等[3]针对带有末端攻击角度约束的多导弹协同制导问题,运用模型预测扩展控制和协同比例制导,设计了一种满足末端攻击角度约束的多导弹协同次优制导律。孙雪娇等[4]针对多枚导弹三维空间协同攻击机动目标问题,提出了一种多导弹分布式协同制导与控制算法。赵启伦等[5]针对多导弹协同拦截高超声速目标问题,设计了一种具有领弹—从弹拓扑结构的异类导弹协同制导律。为了实现导弹的同时到达导引,必须精确估计剩余飞行时间(time-to-go),已有****提出了一些可以借鉴的算法。
Tahk等[6]提出了一种递推的剩余时间预测算法,但其剩余时间估计误差较大。Lam[7]推导出了2种计算剩余时间的闭环解析解,但其假设条件比较理想。Ryoo等[8]针对最优导引律/攻击角度控制-0型(OGL/IAC-0) 导引律,提出了一种估计剩余时间的算法,但难以满足时间控制的精度要求。Whang和Ra[9-10]对比例导引律情况,提出了一种基于Kalman滤波的剩余时间估计算法;另外,对偏置比例导引律情况,推导出了一种剩余时间估计滤波器,但该算法不适用于初始前置角较大的情况。Shin等[11]应用导引指令历史数据提出了一种剩余时间估计算法,但其计算量较大。Cho和Ryoo[12]针对速度变化规律具有一定不确定性的导弹,推导出了一类加权能量最优导引律,对导弹未来速度曲线进行了预测,对剩余时间进行了估计,但其估计精度难以满足时间控制要求。李辕等[13]分别针对顺轨与逆轨拦截飞行轨迹的特点,基于预测碰撞点设计了相应的剩余飞行时间估计算法。但上述算法在导弹前置角较大时估计精度都不高。
针对现有剩余时间估计算法在导弹前置角较大时估计精度不高的问题,笔者课题组[14]提出了一种采用分段求解的比例导引剩余时间估计算法,该算法首先对比例导引的闭环运动方程进行变形,得到弹目距离和飞行时间关于前置角的一阶非线性微分方程,然后对前置角的变化区间适当分段,在每段区间内保证前置角的增量为小角度,从而利用一阶泰勒展开求解每段区间内的微分方程,最后通过分段迭代求解,得到大前置角下的剩余时间估计。另外,笔者课题组[15]构造了一种带攻击角度约束项并考虑前置角约束的偏置比例导引律,并且采用分段求解的思想给出了对应的剩余时间估计算法。
文献[14-15]中提出的剩余时间估计算法,虽然适合于解决大前置角情况下的剩余时间估计问题,但其算法假设导弹飞行速度大小为已知常值,而这与实际情况并不相符合,因为实际导弹的飞行速度根本就不进行控制,在导弹速度时变情况下,如何解决大前置角情况下的剩余时间估计问题目前还没有解决。本文针对该问题给出了一种解决算法。相比于文献[14-15],本文的主要贡献在于增加了对导弹时变速度的预测,并基于此,给出了在导弹速度时变且考虑大前置角的情况下比例导引律和偏置比例导引律的剩余时间估计算法。
1 问题描述 考虑如图 1所示的寻的制导,XOY为地面坐标系,目标静止,导弹速度大小V(t)时变,M为导弹,T为目标。Rqθφ分别为惯性系下的弹目距离、目标视线角、导弹的航向角与前置角。导引方程可表示为
(1)

图 1 寻的制导示意图 Fig. 1 Schematic diagram of homing guidance
图选项




式中:an为导引指令。初始条件为R(t0)=R0φ(t0)=φ0q(t0)=q0θ(t0)=θ0
要解决的问题是:在考虑导弹的飞行速度大小时变的情况下,如何采用分段迭代的思想估计出大前置角下采用比例导引律和偏置比例导引律的剩余时间。
2 比例导引律的剩余时间估计 2.1 闭环形式的反舰导弹速度方程 文献[14]在假定导弹速度大小恒定的情况下,采用分段求解算法,依据t0时刻的初始条件,通过求解式(1),得到了t0t时刻的分段解为
(2)

(3)

(4)

式中:N为比例导引系数;Δφ1φ(t0t)。
依据文献[14]的分段迭代算法,假定当前被处理的分割段[t0, t0t]内导弹速度大小恒定,由分割段起点处的φ(t0)、R(t0),可得到分割段末端处的φ(t0t)、R(t0t)以及导弹飞过该分割段所需时间Δt。由比例导引律有 (NV2/R)sinφ,若考虑侧滑转弯控制方式,根据气动力与侧滑角β的关系,又有an=0.5ρV2(tSczββ/md(t),0.5ρV2为动压,ρ为海平面标准大气密度,S为参考面积,czβ为侧力系数对侧滑角β的偏导数,md(t)为导弹质量,其变化规律为md(t=M0-μtM0为导弹的初始质量,μ为燃料的消耗率。因此有β=[2Nmd(t)/(ρSczβR)]sinφ,进一步可得到与当前被处理的分割段的起点处的φ(t0)、R(t0)和分割段末端处的φ(t0t)、R(t0t)对应的β的预测指令值分别为
(5)

式中:下标“cmd”表示指令。
考虑到平飞是反舰导弹的典型飞行状态,其速度方程可描述为
(6)

式中:P(t)为推力;为平飞迎角,cyα为升力系数对迎角α的偏导数,g为重力加速度;Cx为阻力系数,CxCx, 0+cxα|α|+cxβ|β|,cxαcxβ分别为Cx关于αβ的偏导数。
将式(5) 代入式(6),即得闭环形式的反舰导弹速度方程。
2.2 剩余时间估计算法 结合文献[14]的分段迭代算法和闭环形式的反舰导弹速度方程,对导弹速度大小进行分段迭代预测,并对剩余时间进行估计与更新,步骤如A1)~G1) 所示:
A1) 将当前时刻测得的Rqθ作为估算当前时刻剩余时间tgo的估计值的初始条件,φ=q-θ,令=0,定义,意为向下取整,即舍去任何小数部分取整,Ω为取定的小角度,例如取10°,表示每一分割段前置角的变化量。
B1) 当>Ω时,转C1);否则,转F1)。
C1) 当 >时,若 >,则取Δφ1=-(-),否则取Δφ1= -;当φ0=时,若φ0=,则取Δφ1=-Ω,否则取Δφ1=Ωpp-1。
D1) 以当前被处理的分割段的起点处导弹的飞行速度作为该分割段的飞行速度(即认为该分割段飞行速度的大小为已知常值),求出该分割段末端处的对应状态变量,即由式(4) 解算Δt,由式(3) 解算φ(t0t),由式(2) 解算R(t0t),转A2)。
E1) tφ0φ(t0t),R0R(t0t), 转B1)。
F1) 转A3)。
G1) t。当前时刻的剩余时间估计结束。
在转弯平飞段对导弹未来速度的大小进行预测及对剩余时间进行修正的计算步骤如A2)~ C2) 所示:
A2) 假设在当前被处理的分割段[t0, t0t]内,导弹的速度是匀加速或者匀减速变化的。由V(t0)和,根据式(6) 计算,暂时认为区间[t0, t0t]内导弹的加速度恒为 ,计算出t0t时刻导弹速度的初始预测值Vp(t0t)=V(t0)+Δt;由Vp(t0t)和(t0t),再根据式(6) 计算出对应的 t);取作为[t0, t0t]内的平均加速度,计算出t0t时刻导弹速度的一个校正预测值
B2) 计算分割段[t0, t0t]内的平均速度,根据平均速度V和式(4) 对Δt进行更新,根据更新后的Δt再次按照A2) 的过程计算出V(t0t)。
C2) V(t0)←V(t0t),迭代次数更新ckck+1,转E1)。
在近似直线飞行段对导弹未来速度的大小进行预测及对剩余时间进行修正的计算步骤如A3)~E3) 所示:
A3) 当Ω时,表明导引转弯平飞段基本结束、开始转入近似直线飞行的时刻,通过前面导引转弯平飞段的计算,已经得到了这时的t0V(t0)、φ(t0)和R(t0),根据式(5) 可算出。以此为初始条件,考虑弯曲航程的影响,可估算出近似直线飞行段的剩余飞行航程
B3) 根据选定的航程长度ΔLL(t0)进行分割,计算
C3) 如果n=1,转E3);否则,计算,假设在当前被处理的剩余飞行航程分割段[L, LL]内(与其对应的时间区间用[t0, t0t]表示),导弹的速度是匀加速或者匀减速变化的。由V(t0)和,根据式(6) 计算,初步预测导弹飞过分割段区间[L, LL]所需要的时间ΔtpL/V(t0),假设区间[t0, t0tp]内反舰导弹的加速度恒为,计算出t0tp时刻导弹速度的一个初始预测值V(t0tp)=V(t0)+Δtp;由V(t0tp)和,再根据式(6) 计算出对应的;取Δtp))作为[t0, t0tp]内的平均加速度,计算出t0tp时刻导弹速度的一个校正预测值V(t0tp)=V(t0)+ 。将Δtp更新为ΔtL/[0.5(V(t0)+V(t0tp))]。计算出t0t时刻导弹速度的校正预测值
D3) tV(t0)←V(t0t),迭代次数(即分段数) ckck+1,nn-1,LLL,转C3)。
E3) 这一步对应于近似直线飞行段的最后一个分割段[L, 0]。计算,由V(t0)和,根据式(6) 计算,初步预测导弹飞过分割段[L, 0]所需时间Δtp=L/V(t0),假设该区间[t0, t0tp]内导弹加速度恒为,计算出t0tp时刻导弹速度的一个初始预测值V(t0tp)=V(t0)+Δtp;由V(t0tp)和 =0,再根据式(6) 计算出对应的V·(t0tp);取 作为[t0, t0tp]内的平均加速度,计算出t0tp时刻导弹速度的校正预测值V(t0tp)=V(t0)+ 。将Δtp更新为Δt=L/[0.5(V(t0)+V(t0tp))]。计算出t0t时刻导弹速度的校正预测值V(t0t)=V(t0)+ 。迭代次数(即分段数)更新ckck+1,转G1)。
3 偏置比例导引律的剩余时间估计 采用文献[15]构造的带攻击角度约束项并考虑前置角约束的偏置比例导引律
(7)

式中:θd为期望的攻击角度;为节省篇幅,其他有关公式与符号说明可参见文献[15]。
类似于比例导引律的情况,可得当前分割段偏置比例导引律(式(7))对应的β的预测值为
(8)

式中:αs=θ-Nq+(N-1)θd为文献[15]为了表述简洁而定义的一个组合角度,为了避免与前面提到的导弹迎角α混淆,特加入下标s。
类似地可写出(t0t)的表达式。
结合文献[15]的分段迭代算法,考虑导弹速度的时变特性,对导弹速度大小进行预测,并对剩余时间进行估计与更新的算法如a1)~g1) 所示:
a1) 令=0,将测得的Rqθ作为估计算法的初始值,注意αs, 0=θ0-Nq0+(N-1)θdφ0=q0-θ0
b1) 若αs, 0≠0,转c1);否则,算法结束。
c1) 按文献[15]中的公式确定α1和Δt
d1) 按文献[15]中的公式分别计算,计算t)αs, 0
e1) 若α1≠0,转a2);否则,转a3)。
f1) tV(t0)←V(t0t),αs, 0αs(t0t),,迭代次数更新;转b1)。
g1) tV(t0)←V(t0t),αs, 0αs(t0t),迭代次数更新ckck+1;转b1)。
在转弯平飞段,对导弹未来速度的大小进行预测及对剩余时间进行修正的步骤如a2)~b2) 所示:
a2) 与比例导引情况下通过分段迭代算法对导弹未来速度的大小进行预测的计算步骤基本相同,不同之处在于计算时要用式(8)。
b2) 计算分割段[t0, t0t]内的平均速度V=0.5(V(t0)+V(t0t));由于文献[15]确定Δt的式中只有B6=R0/(KVcos φ0)与速度有关,因此,时间更新为Δt←(V/V(t0))Δt;更新Δt后,按照a2) 的过程计算V(t0t),tV(t0)←V(t0t),αs, 0αs(t0t),φ0φ0+ ,迭代次数更新ckck+1;转f1)。
在近似直线飞行段,对导弹未来速度的大小进行预测及对剩余时间进行修正的步骤如a3)~e3) 所示:
a3) 当分段迭代算法中的α1=0 时,表示转弯平飞段基本结束、开始转入近似直线飞行段,通过转弯平飞段的计算,已经得到了这时的 t 0V ( t 0)、φ(t0)、R(t0)和 αs (t0)。进一步由式(8) 可算出(t0),假设 β 在近似直线飞行段由(t0)线性地趋于零,依此利用式(6) 可对导弹未来速度的大小进行预测。以 φ(t0)、R(t0)和 αs (t0)为初始条件,可推导出在偏置比例导引律(式(7))作用下近似直线飞行段的剩余飞行航程的估计公式为

式中:C1=1/[2(2N-1)];C2=K/[(N+K)(2N-1)];C3=K2/[(2N-1)(1+2K)(N+K)];L0L(t0)。
b3) 根据选定的用于分段的一个固定的航程长度ΔLL(t0)进行分割,计算
c3) 如果n=1,转e3),否则,可仿照比例导引律情况下的步骤C3),计算出t0t时刻导弹速度的一个校正预测值V(t0t)=V(t0)+
d3) tV(t0)←V(t0t),迭代次数(即分段数)更新ckck+1,nn-1,LLL,转c3)。
e3) 这一步对应于近似直线飞行段的最后一个分割段[L, 0],可仿照比例导引律情况下的步骤E3),计算出t0t时刻导弹速度的一个校正预测值V(t0t)=V(t0)+ tV(t0)←V(t0t),αs, 0αs(t0t),进行迭代次数更新;转g1)。
4 仿真结果 假设导弹的初始坐标为(-10 000, 0) m,初始航向角为θ(t0)=θ0=-85°,初始速度为V =300 m/s。目标静止,坐标为(0, 0) m。取N=3,ρ=1.225 kg/m3S=0.25 m2,升力系数对迎角的偏导数为cyα=30.5 rad-1,侧力系数对侧滑角的偏导数为czβ=15.2 rad-1,重力加速度g=9.8 m/s2。以末制导开始时刻t0=0为计时起点,取导弹在末制导开始时的初始质量为M0=1 500 kg,燃料的消耗率为μ=0.5 kg/s,取阻力系数Cx≈0.33+3.8|α|+1.5|β|(迎角和侧滑角的单位为rad),推力P(t)=6 500 N。
对于比例导引律情况, 取对大前置角进行分割的角度Ω=10°,取对近似直线飞行段进行分割的长度ΔL=1 000 m。取仿真步长为0.01 s, 仿真结束条件为R < 2.5 m。仿真结果见图 2, 为初始时刻预测的导弹速度。
图 2 比例导引律情况仿真结果 Fig. 2 Simulation results for proportional navigation guidance law
图选项




对带攻击角度约束项并考虑前置角约束的偏置比例导引律情况, 仿真条件与仿真过程与比例导引律下的基本相同,只是增加了终端落角约束条件θ(tf)=θd=120°,tf为指定的攻击时间。仿真结果见图 3
图 3 偏置比例导引律情况仿真结果 Fig. 3 Simulation results for biased proportional navigation guidance law
图选项




图 2(a)图 3(a)中还给出了常用的基于小角度假设算法[1-2]和现有的分段迭代算法[14-15]的仿真结果,以便于对剩余时间估计精度进行比较。
图 2(a)图 3(a)可以看出,实际的剩余时间tgo是斜率为-1的直线(即图 2(a)图 3(a)中处于最上面的虚划线),基于速度预测的分段迭代算法的剩余时间估计曲线几乎与实际的剩余时间曲线重合, 图 2(a)的局部放大图如图 2(b)所示,其剩余时间估计误差的最大绝对值不超过0.1 s(最大估计误差出现在t=0处),显示出非常高的估计精度,而现有分段迭代算法的剩余时间估计误差却明显偏大。由于图 3(a)的局部放大图与图 2(a)的局部放大图情况类似,为简洁起见,在此从略。
仿真结果表明,在导弹飞行速度大小为时变的情况下,在典型仿真背景下,不管是采用比例导引体,还是采用带角度控制的偏置比例导引律,
采用本文提出的基于速度预测的分段迭代剩余时间估计算法的估计精度相对于现有的分段迭代剩余时间估计算法的估计精度都有非常显著提高。
5 结论 1) 将分段迭代求解的思想扩展到对导弹的时变速度进行分段预测。
2) 分别给出了适用于导弹速度时变情况的大前置角下比例导引律和偏置比例导引律的剩余时间估计算法。
3) 该算法以现有分段迭代算法为基础,依据闭环形式的反舰导弹速度微分方程,分转弯平飞段和近似直线飞行段2种情况,分别对导弹未来速度的大小进行预测并对剩余时间进行修正。
4) 算法中给出了偏置比例导引律作用下近似直线飞行段剩余飞行航程的估计公式。
5) 计算结果表明,在导弹飞行速度大小为时变的情况下,不管是采用比例导引律,还是采用带角度控制的偏置比例导引律,该算法得到的剩余时间估计精度相对于现有分段迭代剩余时间估计算法的估计精度都有非常明显的提高。

参考文献
[1] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J].IEEE Transactions on Control Systems Technology, 2006, 14(2): 260–266.DOI:10.1109/TCST.2005.863655
[2] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1): 275–280.DOI:10.2514/1.40136
[3] 李新三, 汪立新, 王明建, 等. 基于MPSC和CPN制导方法的协同制导律[J].北京航空航天大学学报, 2016, 42(9): 1857–1863.
LI X S, WANG L X, WANG M J, et al. Cooperative guidance law based on MPSC and CPN guidance method[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1857–1863.(in Chinese)
[4] 孙雪娇, 周锐, 吴江, 等. 多导弹分布式协同制导与控制方法[J].北京航空航天大学学报, 2014, 40(1): 120–124.
SUN X J, ZHOU R, WU J, et al. Distributed cooperative guidance and control for multiple missiles[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 120–124.(in Chinese)
[5] 赵启伦, 陈建, 董希旺, 等. 拦截高超声速目标的异类导弹协同制导律[J].航空学报, 2016, 37(3): 936–948.
ZHAO Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 936–948.(in Chinese)
[6] TAHK M J, RYOO C K, CHO H J. Recursive time-to-go estimation for homing guidance missiles[J].IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 13–24.DOI:10.1109/7.993225
[7] LAM V C. Time-to-go estimate for missile guidance:AIAA-2005-6459[R].Reston:AIAA, 2005.
[8] RYOO C K, CHO H J, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J].IEEE Transactions on Control Systems Technology, 2006, 14(3): 483–492.DOI:10.1109/TCST.2006.872525
[9] WHANG I H, RA W S.Time-to-go estimation filter for anti-ship missile application[C]//SICE Annual Conference. Piscataway, NJ:IEEE Press, 2008:247-250.
[10] WHANG I H, RA W S.Time-to-go estimator for missiles guided by BPNG[C]//International Conference on Control, Automation and Systems.Piscataway, NJ:IEEE Press, 2008:463-467.
[11] SHIN H S, CHO H S, TSOURDOS A.Time-to-go estimation using guidance command history[C]//Proceedings of the 18th IFAC World Congress.Laxenburg:IFAC Secretariat, 2011:5531-5536.
[12] CHO H J, RYOO C K. Implementation of optimal guidance laws using predicted missile velocity profiles[J].Journal of Guidance, Control, and Dynamics, 1999, 22(4): 579–588.DOI:10.2514/2.4420
[13] 李辕, 赵继广, 白国玉, 等. 基于预测碰撞点的剩余飞行时间估计方法[J].北京航空航天大学学报, 2016, 42(8): 1667–1674.
LI Y, ZHAO J G, BAI G Y, et al. Method of time-to-go estimation based on predicted crack point[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1667–1674.(in Chinese)
[14] 张友安, 马国欣. 大前置角下比例导引律的剩余时间估计算法[J].哈尔滨工程大学学报, 2013, 34(11): 1409–1414.
ZHANG Y A, MA G X. Time-to-go estimation algorithm for the proportional navigation guidance law with a large lead angle[J].Journal of Harbin Engineering University, 2013, 34(11): 1409–1414.(in Chinese)
[15] ZHANG Y A, MA G X, WU H L. A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(10): 1725–1734.DOI:10.1177/0954410013513754


相关话题/比例 计算 文献 控制 导弹

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 航天器受迫绕飞构型设计与控制*
    随着空间技术的发展,航天器在轨服务技术逐渐成为研究热点[1-2]。在航天器在轨检查与监视、空间目标识别、航天员舱外活动、航天器编队飞行及空间交会对接等任务中,经常会使用“绕飞”技术[3]。航天器绕飞是指一个航天器(本文称为伴随航天器)在一定距离范围内围绕另一目标航天器(本文称为参考航天器)的周期性相 ...
    本站小编 Free考研考试 2021-12-25
  • 共轴刚性旋翼直升机旋翼控制相位角问题分析*
    共轴刚性旋翼直升机采用前行桨叶概念旋翼,能在不同飞行速度下保持良好的旋翼效率,提高飞行包线内的性能[1-4]。由于共轴刚性旋翼具有挥舞刚度大,挥舞频率高,挥舞响应滞后角(20°~40°)明显小于常规旋翼(接近90°)的特点,因此对旋翼的操纵系统,尤其是旋翼控制相位角的设计提出了更高的要求。对于常规单 ...
    本站小编 Free考研考试 2021-12-25
  • 基于跟踪微分器的高超声速飞行器减步控制*
    高超声速飞行器具有可靠的快速运输和全球到达能力,使其在商业和军事领域均具有重要意义,世界各国广泛开展了高超声速飞行器的研制工作[1-2]。受其飞行环境与特殊气动构型影响,高超声速飞行器模型呈现强非线性,气动参数强不确定性,推力与气动耦合等特点[3-4]。因此,控制系统设计对实现其安全可靠飞行,完成设 ...
    本站小编 Free考研考试 2021-12-25
  • 非仿射参数依赖LPV模型的变体飞行器H控制*
    变体飞行器是一种可以大尺度改变自身气动外形的飞行器,这种能够改变外部结构的能力使其可以替代多种不同型号的飞机,因此能够实现全范围大包线下的最优气动外形飞行,而不只局限于单一的飞行作战任务。这种既能解决前期合理优化配置的气动外形,又能与后期多任务执行相悖的新概念飞行器成为了当今世界各国竞相研究的对象[ ...
    本站小编 Free考研考试 2021-12-25
  • 电磁航天器编队位置跟踪自适应协同控制*
    卫星编队利用成员卫星间的协同工作可以实现传统单颗卫星难以完成的任务[1]。由于基于冲量原理的推力器在进行卫星编队轨道控制时具有存在光学污染和寿命有限等诸多问题[2],利用卫星之间的电磁力实现相对轨道的控制受到了众多****的关注[2-12]。电磁航天器编队通过改变各成员卫星电磁线圈的电流可以改变电磁 ...
    本站小编 Free考研考试 2021-12-25
  • 基于虚拟域预测控制的轨迹跟踪方法*
    随着计算机计算性能的提高,标称制导律成为国内外****研究的热点,其已被广泛应用到高超声速飞行器(HypersonicVehicle,HV)的再入制导[1-3]、航空器的航迹制导[4-8]、弹道导弹的制导[9-11]、外星球的登陆[12-16]等领域中。标称制导律的研究主要分为2个部分[17]:一是 ...
    本站小编 Free考研考试 2021-12-25
  • 高抗扰高精度无人机着舰纵向飞行控制*
    随着中国第一艘航空母舰“辽宁号”开始服役,无人机着舰成为近年来****们研究的热点。相比于着陆,无人机的着舰环境更加复杂,无人机需要降落在长度有限的甲板上,在着舰的最后阶段,不仅需要跟踪甲板运动[1],还需要抵抗复杂的舰尾流扰动[2],保证安全精确着舰,这就对着舰飞行控制提出了挑战。美国海军研制了自 ...
    本站小编 Free考研考试 2021-12-25
  • 喷口布局对导弹侧向喷流控制作用的数值模拟*
    为实现飞行器的高机动性、提高飞行器在复杂飞行条件下的控制能力,航天飞机、导弹等普遍采用横向侧向喷流控制技术。与传统控制措施相比,喷流控制具有响应快、可调节、不工作时干扰小、效率高等特点,并可在全部飞行包线内工作[1-2]。但是在采用喷流控制时,存在着来流与喷流的相互干扰,喷流力实际作用效果往往偏离理 ...
    本站小编 Free考研考试 2021-12-25
  • 考虑导弹自动驾驶仪动态特性的新型制导律*
    精确制导技术在现代战争中发挥着重要作用,保证导弹零脱靶量击中目标的同时,带有一定攻击角约束,那么将会发挥导弹更大的作战效能。比如,防空导弹在攻击隐身飞机时,考虑到飞机机体上表面隐身效果差的特点,导弹需要具备天顶攻击能力。对于安装了杀伤增强装置的拦截器,如美国的THAAD拦截弹,采用了侧窗探测方式,拦 ...
    本站小编 Free考研考试 2021-12-25
  • 冲压空气涡轮泵的温控节流孔计算方法*
    冲压空气涡轮(RAT)应急系统是飞机安全的最后保障,在飞机发动机和电源功能全部丧失的情况下,RAT应急能源系统将空气的动能转换为电能/液压能,提供飞机基本操纵所需能源。RAT系统一般由冲压涡轮、液压泵/发电机和收放装置组成,共有2个工作状态:①收回状态,液压泵静止,不输出功率;②伸出状态,RAT弹出 ...
    本站小编 Free考研考试 2021-12-25