删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

反演航天器在轨瞬态外热流的导热反问题

本站小编 Free考研考试/2021-12-25

获得航天器在轨飞行过程中的外热流数据对于研究热控涂层在轨退化规律、各种空间因素对热控产品的影响以及航天器姿轨控发动机羽流热效应都有非常重要的意义,然而中国航天领域在这方面做的工作非常少,主要原因是由于在航天器上安装测量外热流的热流计装置进行直接测量存在很多困难,并且要消耗宝贵的重量、空间、功率等航天器资源.因此可以利用反问题方法来克服直接测量的困难,得到满足一定精度要求的结果.
反问题方法是根据可观测的量值反演系统变化规律或参数影响规律的数学物理方法,航空航天领域中在导弹制导[1]、火箭推进系统故障[2]等方面已经得到良好的应用.导热反问题是反问题方法研究的一个分支,一般是利用研究对象的测量温度,通过一定反演算法计算得到热物性参数、边界条件等未知量.程文龙等[3, 4]提出了卫星热分析模型不确定参数进行分层修正的反问题模型并取得了非常好的反演结果;杨沪宁和钟奇[5]建立了基于蒙特卡罗法反演修正航天器热模型参数的反问题模型;张镜洋等[6]研究了基于蒙特卡罗法的小卫星瞬态热分析模型参数分层修正方法;张中礼等研究了由内壁面温度反演火箭外壁热流的导热反问题[7];Lin和Chen等[8, 9]分别求解了平行板通道和肋片的导热反问题;Huang等[10, 11]求解了三维的热传导反问题;薛奇天和杨海天等求解了多宗量的热传导反问题[12, 13, 14],得到了较满意的结果;王登刚等[15]研究了非线性二维稳态导热反问题的数值求解方法;范春利等[16]求解热传导反问题,识别试件内壁的缺陷.
本文采用导热反问题方法,利用现有的航天器在轨遥测温度数据,通过反演计算就能够得到满足一定精度要求的航天器在轨外热流数据.由于导热反问题的不适定性及非线性,使导热反问题的求解远比导热正问题复杂.反演航天器在轨外热流的导热反问题需要在边界条件中引入表征辐射热流的4次方非线性项,大大增加了求解的难度,目前国内外还缺乏这方面的研究工作.本文研究了利用航天器设备在轨遥测温度值反演出航天器在轨瞬态外热流的导热反问题方法.首先推导了反演航天器在轨外热流的导热反问题数学模型,采用共轭梯度法求解导热反问题并改进了共轭梯度法的迭代过程以增加其抗不适定性用于求解;在此基础上采用FORTRAN语言编写通用计算程序,构造了两组数值试验用于检验反演算法的效果和计算程序的正确性.
1 数学模型本文所研究的是一维瞬态导热问题,一维瞬态导热方程为
式中:T为温度;τ为时间;k为热传导系数;ρ为密度;cp为比热容.内侧即朝向航天器内部的一侧(x=0)为绝热边界条件:
外侧即朝向外界空间环境的一侧(x=L)为第3类边界条件:
式中:q为研究对象的吸收外热流值,包括吸收的太阳辐射、天体的红外辐射以及天体反照的太阳辐射;ε为半球向发射率;σ为斯蒂芬-波尔兹曼常数.
初始条件为
式中:T0为初始温度.
本文研究的导热反问题是通过测量温度反演出q值.从式(3)中可以看到,由于边界条件中引入了表征辐射热流的4次方非线性项,大大增加了导热反问题的不适定性.导热反问题的求解方法主要包括共轭梯度法、最大熵法、正则化算法等,与其他几种算法相比共轭梯度法在迭代过程中具有一定的抗不适定性,目前在国内外导热反问题研究领域仍然是最常用的方法,本文采用共轭梯度法进行导热反问题的求解.
共轭梯度法的目标函数为
式中:Tcal,n为温度计算值;Tmea,n为温度在轨遥测值;n为不同时间点.吸收外热流值q的迭代式为
式中:b为迭代次数;dn的计算式为
γ由式(8)计算:
式中:N为总时间点数;迭代步长β
式中:i为不同时间点;$\frac{{\partial {T_i}}}{{\partial {q_n}}}$为灵敏度系数.为得到$\frac{{\partial {T_i}}}{{\partial {q_n}}}$需要求解灵敏度方程.灵敏度方程由非稳态导热方程(1)对qn求微分得到:
边界条件式(2)和式(3)对qn求微分得到:
式(12)中
灵敏度方程的初始条件由式(4)对qn求微分得到:
由式(5)对qn求微分得到$\frac{{\partial J}}{{\partial {q_n}}}$的计算式:
共轭梯度法的收敛目标是使
式中:δ为很小的正数.
为增强迭代过程的收敛性,与传统的共轭梯度法迭代过程相比进行了两处改进:
1) 由式(12)可以看到,灵敏度系数$\frac{{\partial {T_i}}}{{\partial {q_n}}}$是温度T(x,τ)的函数,因此在每轮迭代得到新的T(x,τ)后,重新计算灵敏度系数$\frac{{\partial {T_i}}}{{\partial {q_n}}}$;
2) 从物理概念出发,航天器在轨吸收外热流不小于0,因此式(6)整理为
共轭梯度法的求解步骤如下:
1) 求解导热方程(1)得到温度计算值Tcal,n.
2) 求解灵敏度方程(10)得到灵敏度系数$\frac{{\partial {T_i}}}{{\partial {q_n}}}$.
3) 根据温度计算值和在轨遥测值,检查收敛目标式(16)是否达到;如果达到收敛目标,则停止迭代,否则,转入第4)步.
4) 计算$\frac{{\partial J}}{{\partial {q_n}}}$、γ、βd.
5) 由式(17)计算得到下一轮迭代qnb+1,转入第1)步.
2 计算结果为检验共轭梯度法的计算效果,本文设计了两组数值试验,每组数值试验检验步骤如下:
1) 给出一组随时间变化的吸收外热流值qmea.
2) 以qmea为边界条件求解导热方程(1),得到的结果作为温度测量值Tmea.
3) Tmea作为导热反问题的输入条件,采用共轭梯度法反演吸收外热流值qcgm.
4) 比较qmeaqcgm,检验反演算法的效果.
研究对象为高度30 mm的铝合金圆柱体,圆柱体除一个端面朝向空间环境通过辐射交换热量外,其余各面均为绝热边界,因此沿轴向可视为一维导热;计算网格为沿轴向划分5个节点;热物理参数取值为密度ρ=2 700 kg/m3,比热容cp=900 J/(kg·K),热传导系数k=120 W/(m·K),辐射边界半球向发射率ε=0.6.
2.1 数值试验1数值试验1给出1组吸收外热流值qmea如图 1所示,数值试验1给出的吸收外热流曲线能够代表目前多数地球轨道航天器和深空探测航天器在轨吸收外热流变化趋势.通过求解导热正问题(式(1))得到温度测量值Tmea并作为导热反问题的输入条件,采用共轭梯度法反演吸收外热流值qcgm.共轭梯度法迭代200次后J(qnb)<0.001满足收敛条件,查看导热反问题反演出的温度值Tcgm与测量温度值Tmea可以看到两者符合的很好,见图 2.
图 1 数值试验1的吸收外热流曲线Fig. 1 Absorbed external heat flux curve of numerical experiment 1
图选项



图 2 数值试验1的温度反演值与测量值比较Fig. 2 Compare between inversion temperature and measuring data of numerical experiment 1
图选项


图 3和表 1分别为导热反问题反演出的吸收外热流值qcgm与真实值qmea的比较.从图 3中看到,qcgmqmea的曲线几乎重合在一起;由表 1中的数据qcgmqmea偏差值在-23~19 W/m2之间;除了0值区域外,最大相对偏差为2.0%,共轭梯度法很好的反演出了吸收外热流值.
图 3 数值试验1的吸收外热流反演值与真实值比较Fig. 3 Compare between inversion absorbed external heat flux and real value of numerical experiment 1
图选项



表 1 数值试验1的吸收外热流反演值与真实值比较Table 1 Compare between inversion absorbed external heat flux and real value of numerical experiment 1
时间/sqmea/(W·m-2)qcgm/(W·m-2)相对误差/%时间/sqmea/(W·m-2)qcgm/(W·m-2)相对误差/%
02002042.0440200197-1.5
20400390-2.5460400398-0.5
40600598-0.3480600594-1.0
608008060.85008008000.0
801 0001 0191.95201 0001 0161.6
1001 2001 177-1.95401 2001 179-1.8
1201 0001 0121.25601 0001 0151.5
140800796-0.5580800798-0.3
160600593-1.2600600596-0.7
180400398-0.56204004030.8
200200199-0.5640200196-2.0
2200866007
240000.0680000.0
260000.0700000.0
280000.0720000.0
300000.0740000.0
320000.0760000.0
340000.0780000.0
360000.0800000.0
380000.0820000.0
400000.0840000.0
42005880000.0

表选项


2.2 数值试验2数值试验2给出1组吸收外热流值qmea如图 4所示,数值试验2的目的是为了检验阶跃突变情况下(如航天器姿轨控发动机点火工作)的共轭梯度法反演效果.通过求解导热正问题(式(1))得到温度测量值Tmea并作为导热反问题的输入条件,采用共轭梯度法反演吸收外热流值qcgm.共轭梯度法迭代350次后J(qnb)<0.63,增大迭代次数后J(qnb)在0.62~0.63之间波动不再减小.查看导热反问题反演出的温度值Tcgm与测量温度值Tmea如图 5所示,从图中可以看到,TcgmTmea的偏差主要出现在曲线拐点附近,其他区域符合较好.
图 4 数值试验2的吸收外热流曲线Fig. 4 Absorbed external heat flux curve of numerical experiment 2
图选项



图 5 数值试验2的温度反演值与测量值比较Fig. 5 Compare between inversion temperature and measuring data of numerical experiment 2
图选项


图 6和表 2分别为导热反问题反演出的吸收外热流值qcgm与真实值qmea的比较
图 6 数值试验2的吸收外热流反演值与真实值比较Fig. 6 Compare between inversion absorbed externalheat flux and real value of numerical experiment 2
图选项



表 2 数值试验2的吸收外热流反演值与真实值比较Table 2 Compare between inversion absorbed external heat flux and real value of numerical experiment 2
时间/sqmea/(W·m-2)qcgm/(W·m-2)相对误差/%时间/sqmea/(W·m-2)qcgm/(W·m-2)相对误差/%
01 000986-1.44401 000707-29.3
201 000992-0.84601 0001 0020.2
401 0001 0010.14801 0001 0232.3
601 0001 0101.05001 0001 0191.9
801 0001 0131.35201 0001 0242.4
1001 0001 0080.85401 0001 0262.6
1201 000997-0.35601 0001 0161.6
1401 000991-0.95801 0001 0040.4
1601 0001 0000.06001 0001 0080.8
1801 000982-1.86201 000990-1.0
2001 000695-30.56401 000684-31.6
220000.0660000.0
240000.0680000.0
260000.0700000.0
280000.0720000.0
300000.0740000.0
320000.0760000.0
340000.0780000.0
360000.0800000.0
380000.0820000.0
400000.0840000.0
420000.0880000.0

表选项


图 6和表 2分别为导热反问题反演出的吸收外热流值qcgm与真实值qmea的比较.
从图 6中看到除了在qmea出现阶跃变化位置外其他区域共轭梯度法反演结果较好,最大相对偏差为2.9%;在阶跃变化处有一个时间点的相对偏差达到了31.6%,在实用中需要对阶跃位置的反演结果进行分析处理.
2.3 小 结通过两组数值试验对共轭梯度法的效果进行了检验,数值试验1中共轭梯度法很好地反演出了吸收外热流值;数值试验2中除了阶跃变化位置其他区域能够得到较好的反演结果,阶跃位置的反演结果需要根据阶跃位置以外区域的反演结果进行分析处理.数值试验1给出的吸收外热流曲线能够代表大多数地球轨道航天器以及深空探测航天器在轨吸收外热流变化趋势,因此本文研究的方法适用于多数航天器.
3 结 论本文研究了利用航天器设备在轨遥测温度值反演出航天器在轨瞬态外热流的导热反问题方法.首先推导了导热反问题数学模型,采用共轭梯度法求解导热反问题并从物理概念角度改进了共轭梯度法的迭代过程以增加其抗不适应性.然后根据大多数地球轨道航天器以及深空探测航天器在轨吸收外热流的特点,构造了两组数值试验对共轭梯度法的反演效果进行了检验.计算结果表明本文研究的方法能够很好地反演出目前大多数地球轨道航天器以及深空探测航天器在轨吸收外热流,对于阶跃变化的吸收外热流情况在对反演结果进行分析处理后也能够得到较好的反演结果.
参考文献
[1] 张天宇,董长虹.基于自适应反演法的导弹直/气复合制导[J].北京航空航天大学学报, 2013, 39(7):902-906.
Zhang T Y, Dong C H.Compound control system design based on adaptive backstepping theory[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(7):902-906(in Chinese).
Cited By in Cnki
[2] 杨尔辅,张振鹏,刘国球.一种推进系统故障诊断反问题模型与算法[J].北京航空航天大学学报, 1999, 25(6):684-687.
Yang E F, Zhang Z P, Liu G Q.Model and algorithm of inverse-problems on fault diagnosis for propulsion systems[J].Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6):684-687(in Chinese).
Cited By in Cnki (3)
[3] 程文龙,刘娜,钟奇,等.卫星稳态热模型参数修正方法研究[J].宇航学报, 2010, 31(1):270-275.
Cheng W L, Liu N, Zhong Q, et al.Study on parameters correction method of steady-state thermal model for spacecraft[J].Journal of Astronautics, 2010, 31(1):270-275(in Chinese).
Cited By in Cnki (8)
[4] 程文龙,刘娜,李志,等.卫星热模型蒙特卡罗混合算法的修正方法应用研究[J].科学通报, 2010, 55(20):2056-2061.
Cheng W L, Liu N, Li Z, et al.Application study of a correction method for a spacecraft thermal model with a Monte-Carlo hybrid algorithm[J].Chinese Science Bulletin, 2010, 55(20):2056-2061(in Chinese).
Cited By in Cnki (1)
[5] 杨沪宁,钟奇.航天器热模型蒙特卡罗法修正论述[J].航天器工程, 2009, 18(3):53-58.
Yang H N, Zhong Q.Monte-Carlo method for thermal model correction of spacecraft[J].Spacecraft Engineering, 2009, 18(3):53-58(in Chinese).
Cited By in Cnki (7)
[6] 张镜洋,常海萍,王立国.小卫星瞬态热分析模型修正方法[J].中国空间科学技术, 2013, 33(4):24-30.
Zhang J Y, Chang H P, Wang L G.Correction method for transient thermal analysis model of small satellite[J].Chinese Space Science and Technology, 2013, 33(4):24-30(in Chinese).
Cited By in Cnki (1)
[7] 张中礼,李明海,胡绍全.外壁热流响应计算的导热反问题方法及其验证[J].强度与环境, 2009, 36(4):54-59.
Zhang Z L, Li M H, Hu S Q.Nonlinear transient inverse heat conduction problems method of calculating the boundary heat response[J].Structure & Environment Engineering, 2009, 36(4):54-59(in Chinese).
Cited By in Cnki
[8] Lin D T, Yan W M, Li H Y.Inverse problem of unsteady conjugated forced convection in parallel plate channels[J].International Journal of Heat and Mass Transfer, 2008, 51(5-6):993-1002.
Click to display the text
[9] Chen U C, Cheng W J, Hsu J C.Two-dimensional inverse problem in estimating heat flux of pin fins[J].International Communication of Heat and Mass Transfer, 2001, 28(6):793-801.
Click to display the text
[10] Huang C H, Wang S P.A three-dimensional inverse heat conduction problem in estimated surface heat flux by conjugate gradient method[J].International Journal of Heat and Mass Transfer, 1999, 42(18):3387-3403.
Click to display the text
[11] Huang C H, Chen W C.A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method[J].International Journal of Heat and Mass Transfer, 2000, 43(17):3171-3181.
Click to display the text
[12] 薛齐文,杨海天,胡国俊.共轭梯度法求解瞬态传热组合边界条件多宗量反问题[J].应用基础与工程科学学报, 2004, 12(2):113-120.
Xue Q W, Yang H T, Hu G J.Solving inverse heat conduction problems with multi-variables of boundary conditions in transient-state via conjugate gradient method[J].Journal of Basic Science and Engineering, 2004, 12(2):113-120(in Chinese).
Cited By in Cnki (10)
[13] Xue Q W, Yan H T.A conjugate gradient method for the hyperbolic inverse heat conduction problem with multi-variables[J].Chinese Journal of Computational Physics, 2005, 22(5):417-424.
Click to display the text
[14] 杨海天,胡国俊.共轭梯度法求解多宗量稳态传热反问题[J].应用基础与工程科学学报, 2002, 10(2):174-181.
Yang H T, Hu G J.Solving inverse heat conduction problems with multi-variables in steady-state via conjugate gradient method[J].Journal of Basic Science and Engineering, 2002, 10(2):174-181(in Chinese).
Cited By in Cnki (23)
[15] 王登刚,刘迎曦,李守巨,等.非线性二维稳态导热反问题的一种数值解法[J].西安交通大学学报, 2000, 34(1):49-52.
Wang D G, Liu Y X, Li S J, et a1.Two dimensional numerical solution for nonlinear inverse steady heat conduction[J].Journal of Xi'an Jiaotong University, 2000, 34(1):49-52(in Chinese
Cited By in Cnki (34)
[16] 范春利,孙丰瑞,杨立.基于红外侧温的试件内部缺陷的识别算法研究[J].工程热物理学报, 2007, 28(2):304-306.
Fan C L, Sun F R, Yang L.An algorithm study on identification of subsurface defect based on thermographic temperature measurement[J].Journal of Engineering Thermophysics, 2007, 28(2):304-306(in Chinese).
Cited By in Cnki (22)


相关话题/计算 测量 检验 辐射 物理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 角度测量下双机协同standoff目标跟踪
    无人机(UAV)能够协同执行多种任务,如边界巡逻、敌方监视、编队护航、灾难救援等任务[1],而目标跟踪则是UAV执行任务的关键技术之一.在敌对目标跟踪中,无人机必须与敌对目标保持一定安全距离以降低暴露风险,并且尽可能地提高目标观测信息,即广泛研究的standoff跟踪问题.在过去的研究中,协同sta ...
    本站小编 Free考研考试 2021-12-25
  • 电磁兼容测量天线系数温度误差修正方法
    为确保试验结果的准确性和可比对性,目前电磁兼容性(ElectromagneticCompatibility,EMC)试验大都在温湿度条件可控的微波暗室中进行.但大型设备系统级电磁兼容性试验[1]、现场快速干扰诊断排查、电磁环境监测等一般在外场进行,外场环境温度无法像内场(如屏蔽室)那样做到可控,如果 ...
    本站小编 Free考研考试 2021-12-25
  • 基于自由尾迹/面元法的旋翼下洗干扰计算和直升机配平
    受旋翼涡系的影响,直升机工作在十分复杂的流场当中,旋翼的下洗流对机身振动、桨叶气动载荷和直升机的飞行性能都有十分重要的影响.长期以来,科研人员从数值计算和试验两方面对涡动力学方法进行了大量的研究[1,2,3],对旋翼/机身的复杂气动干扰的理解也愈发加深.当直升机在吊挂飞行、舰载和沙漠等复杂条件起降时 ...
    本站小编 Free考研考试 2021-12-25
  • 面铣刀正交车铣加工切屑厚度的计算方法
    在航空工业,存在着许多的回转体或是半回转体同时带有凸台、耳片或者窗口等异形特征的工件.这类工件在应用传统的方法进行加工时效率低、成本高,对工厂来说是个很大的挑战.近些年出现的车铣复合加工技术为应对这一问题提供了有效的解决途径.越来越多的研究人员开始重视这一新技术,并在许多方面对其进行了探索和研究[1 ...
    本站小编 Free考研考试 2021-12-25
  • 柔片式密封数值计算及性能分析
    柔片式密封作为一种非接触式密封,应用于高速转子系统[1],具有较好的密封性能.柔片式密封在结构上继承了刷式密封的径向柔性[2,3]特点,转子直径变化或偏移±1mm内对其性能影响很小.柔片式密封不存在“滞后效应”[4],其最大工作压差可达1MPa[5],且在较高的密封压差下仍能维持较小的质量泄漏率.优 ...
    本站小编 Free考研考试 2021-12-25
  • 数字化组合测量辅助飞机装配质量检测技术
    ?大型飞机壁板类组件广泛应用于飞机的外形及结构中,大型飞机蒙皮壁板具有尺寸大、外形复杂和结构刚性差等特点,制造过程中经常采用拉伸成形(简称拉形)工艺,对零件外形尺寸准确度和表面完整性等技术指标要求严格[1,2].目前,飞机壁板类组件成形质量检测手段已经由传统几何模拟量测量方式向数字化测量方式转变.文 ...
    本站小编 Free考研考试 2021-12-25
  • 红外窗口材料的热辐射特性测量方法
    ?飞行器在大气层内超声速飞行时,红外(Infrared,IR)探测系统面临复杂的气动光学效应,使红外探测系统的性能下降[1,2].高温绕流气体流场强烈的气动加热使红外窗口的温度迅速上升,高温红外窗口和高温气体产生强烈的气动热辐射,不仅使目标探测信噪比降低,还形成强烈的背景辐射,极易导致红外探测器饱和 ...
    本站小编 Free考研考试 2021-12-25
  • 时变热辐射环境下高温合金蜂窝板三维热变形测量
    高温合金蜂窝板结构由较薄的高强度合金蒙皮和较厚的低强度蜂窝芯层焊接或黏接组成三明治结构,因其具有重量轻、强度高、高温环境下抗变形能力强、导热系数小等优点使之成为高速飞行器理想的隔热结构,已广泛应用于火箭、导弹、飞机等高速飞行器的热防护结构材料[1,2].20世纪40年代德国最早将蜂窝板结构应用于四引 ...
    本站小编 Free考研考试 2021-12-25
  • 电缆长度辅助的光纤陀螺测斜仪组合测量方法
    在石油行业,精确的油气井井眼轨迹姿态(方位角、倾斜角及工具面角)和位置(经度、纬度及高度)信息对于油气田开发具有重要意义.近年来随着大斜度井、定向井、丛式井及水平井等复杂油气井的增多,对油气井轨迹参数测量计算提出了更高要求.目前常用到的井眼轨迹测量仪器主要有磁通门测斜仪和动调陀螺测斜仪.磁通门测斜仪 ...
    本站小编 Free考研考试 2021-12-25
  • 基于光学微腔模式劈裂的角速率测量方法
    回音壁式光学微腔具有低模式体积、高品质因数和可集成的特点,在基础物理及应用领域得到了广泛关注[1,2].微腔内可同时存在一对频率上简并的行波模,分别沿顺时针(ClockWise,CW)及逆时针(Counter-ClockWise,CCW)方向传播.亚波长散射源会引发该简并模互相耦合,2个腔模借助散射 ...
    本站小编 Free考研考试 2021-12-25