摘要本文主要在套代数框架下研究了线性时变系统的鲁棒稳定性.当系统和控制器具有gap度量下相互独立的扰动时,应用系统图和控制器图的三角形式,给出了该类系统鲁棒稳定的充分条件.进一步地,还给出了多个系统同时鲁棒稳定的充分条件.数值结果表明结论是有效的. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-06-22 | | 基金资助:国家自然科学基金资助项目(11701537);中央高校基本科研业务费(201964007)
| 作者简介: 徐晓萍,E-mail:xxpouc@163.com;石岩月,E-mail:shiyanyue@163.com |
[1] Dale W. N., Smith M. C., Stabilizability and existence of system representations for discrete-time timevarying systems, SIAM J. Control Optim., 1993, 31(b):1538-1557. [2] Davidson K. R., Nest Algebras, Pitman Research Notes in Mathematics Series, Vol. 191, Longman Scientific and Technical Pub. Co., UK, 1988. [3] Djouadi S. M., On robustness in the gap metric and coprime factor uncertainty for LTV systems, Syst. Control Lett., 2015, 80:16-22. [4] Doyle J., Francis B. A., Tannenbaum A. R., Feedback Control Theory, Macmillan Publishing Co., New York, 1990. [5] Feintuch A., On strong stabilization for linear time-varying systems, Syst. Control Lett., 2005, 54:1091-1095. [6] Feintuch A., Robust Control Theory in Hilbert Space, Springer, 1998. [7] Feintuch A., Robustness for time-varying systems, Mathematics of Control, Signals and Systems, 1993, 6:247-263. [8] Feintuch A., The gap metric for time-varying systems, Syst. Control Lett., 1991, 16:277-279. [9] Foias C., Georgiou T. T., Smith M. C., Geometric techniques for robust stabilization of linear time-varying systems, In:Proc. of the 29th CDC, December, 1990:2868-2873. [10] Foias C., Georgiou T. T., Smith M. C., Robust stability of feedback systems:A geometric approach using the gap metric, SIAM J. Control Optim., 1993, 31:1518-1537. [11] Georgiou T. T., Smith M. C., Optimal robustness in the gap metric, IEEE Trans. Automat. Control, 1990, 35:673-685. [12] Georgiou T. T., On the computation of the gap metric, Syst. Control Lett., 1988, 11:253-257. [13] Liu L., Lu Y. F., Coprime representations and feedback stabilization of discrete time-varying linear systems, International Journal of Control, Automation and Systems, 2019, 17(2):425-434. [14] Liu L., Lu Y. F., Necessary and sufficient conditions to the transitivity in simultaneous stabilisation of time-varying systems, IET Control Theory Appl., 2013, 7(14):1834-1842. [15] Liu L., Lu Y. F., Transitivity in simultaneous stabilization for a family of time-varying systems, Syst. Control Lett., 2015, 78:55-62. [16] Lu Y. F., Gong T., On stabilization for discrete linear time-varying systems, Syst. Control Lett., 2011, 60:1024-1031. [17] Lu Y. F., Xu X. P., The stabilization problem for discrete time-varying linear systems, Syst. Control Lett., 2008, 57(11):936-939. [18] Quadrat A., The fractional representation approach to synthesis problems:An algebraic analysis viewpoint, Part Ⅱ:Internal stabilization, SIAM J. Control Optim, 2003, 42:300-320. [19] Qiu L., Davison E. J., Feedback stability under simultaneous gap metric uncertainties in plant and controller, Syst. Control Lett., 1992, 18:9-22. [20] Smith M. C., On stabilization and existence of coprime factorizations, IEEE Trans. Automat. Control, 1989, 34:1005-1007. [21] Vidyasagar M., Control System Synthesis:A Factorization Approach, MIT Press, Cambridge, 1985. [22] Vidyasagar M., The graph metric for unstable plants and robustness estimates for feedback stability, IEEE Trans. Automat. Control, 1984, 29(5):403-418. [23] Xu X. P., Liu L., Robust stability analysis for linear systems subjected to time-varying uncertainties within the framework of nest algebra, Science Asia, 2018, 44:46-53. [24] Yu T. Q., Bicoprime factor stability criteria for linear time-varying systems in the nest algebra, International Journal of Control, https://doi.org/10.1080/00207179.2019.1634287, 2019. [25] Yu T. Q., Chi W., Sufficient conditions for simultaneous stabilization of three linear systems within the framework of nest algebras, Journal of the Franklin Institute, 2014, 351:5310-5325. [26] Yu T. Q., The transitivity in simultaneous stabilization, Syst. Control Lett., 2011, 60:1-6. [27] Yu T. Q., Yan H., Simultaneous controller design for time-varying linear systems, Syst. Control Lett., 2011, 60:1032-1037. [28] Zames G., El-Sakkary A. K., Unstable systems and feedback:the gap metric, In:Proc. 16th Allerton Conf., 1980, 380-385.
|
[1] | 郑晓俊, 郇中丹, 刘君. 图像配准中方向场正则化模型的适定性和收敛性[J]. 数学学报, 2021, 64(3): 385-404. | [2] | 陈员龙, 骆世广. Banach空间中正则非退化异宿环的Lipschitz扰动[J]. 数学学报, 2021, 64(3): 485-492. | [3] | 张伟, 李云章. Hilbert空间中控制连续g-框架[J]. 数学学报, 2021, 64(3): 515-528. | [4] | 冯保伟, 李海燕. 带有热记忆的非均匀柔性结构的长时间动力行为[J]. 数学学报, 2020, 63(6): 587-600. | [5] | 路秋英, 邓桂丰, 刘潇, 朱德明. 连接两个具有一维不稳定流形的双曲鞍点异宿环的稳定性[J]. 数学学报, 2018, 61(5): 761-770. | [6] | 苏日古嘎, 吴德玉, 阿拉坦仓. 分块算子矩阵闭值域研究[J]. 数学学报, 2018, 61(3): 447-456. | [7] | 范筱, 蒋英春. 混合范数条件下平移不变信号的非均匀平均采样[J]. 数学学报, 2018, 61(2): 289-300. | [8] | 孟庆. C*代数l上的左模的半双线性型的稳定性[J]. 数学学报, 2016, 59(1): 99-106. | [9] | 杜奕秋, 王宇. 三角环上全可导点[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 935-940. | [10] | 刘磊. 套代数上的高阶全可导点[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 861-870. | [11] | 纪培胜, 赵英姿. Jensen-二次函数方程及其Hyers—Ulam稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 251-260. | [12] | 王小焕, 吕广迎. 非局部时滞反应扩散方程行波解的稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 13-28. | [13] | 丁明玲, 肖祥春, 朱玉灿. Hilbert空间中的K-框架[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1089-1100. | [14] | 胡业新. 一类拟线性椭圆型方程边值问题的稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1181-1190. | [15] | 纪培胜, 魏然红, 刘荣荣. Cauchy-三次函数方程及其Hyers-Ulam稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 559-568. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23870
一类Filiform李代数Qn的自同构群刘丽娜,唐黎明哈尔滨师范大学数学科学学院哈尔滨150025AutomorphismGroupsofaSeriesofFiliformLieAlgebrasQnLiNaLIU,LiMingTANGSchoolofMathematical,HarbinNormal ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27形变bms3代数上的左对称代数结构余意,孙建才上海大学理学院数学系上海200444Left-symmetricAlgebraStructuresontheDeformedbms3AlgebraYiYUJian,CaiSUNDepartmentofMathematics,ShanghaiUnivers ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有非Morsean点的二次可逆系统(r6)的极限环分支隋世友,徐伟骄天津商业大学理学院天津300134BifurcationofLimitCyclesfromtheCenterofQuadraticReversibleSystem(r6)withnon-MorseanPointShiYouSUI, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27锥b-度量空间中的三元重合点与三元不动点定理罗婷1,朱传喜21.江西财经大学信息管理学院南昌330032;2.南昌大学数学系南昌330031TripledCoincidencePointandTripledFixedPointTheoremsinconeb-metricSpacesTingLUO1, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27穿孔度量空间Gromov双曲性的几何特征周青山1,李浏兰2,李希宁31.佛山科学技术学院数学与大数据学院佛山528000;2.衡阳师范学院数学与统计学院衡阳421001;3.中山大学数学学院(珠海)珠海519082GeometricCharacterizationsofGromovHyperboli ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界王泽群1,魏明权2,张兴松3,燕敦验41.东北财经大学数据科学与人工智能学院大连116025;2.信阳师范学院数学与统计学院信阳464000;3.中国人民大学附属中学朝阳学校北京100028;4.中国科学院大学数学科学学院北京100 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27三角代数上的一类非线性局部高阶Jordan三重可导映射费秀海1,王中华2,张海芳11.滇西科技师范学院数理学院临沧677099;2.西安石油大学理学院西安710065AClassofNonlinearLocalHigherJordanTripleDerivableMapsonTriangularAl ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27复Banach空间?p()(1p<)的Mazur-Ulam性质王瑞东,周文乔天津理工大学理学院天津300384TheMazurUlamPropertyforComplexBanachSpace?p()(1p<)Ru ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双线性Fourier乘子在变指标Besov空间的有界性刘茵南阳师范学院数学与统计学院南阳473061TheBoundednessofBilinearFourierMultiplierOperatorsonVariableExponentBesovSpacesYinLIUSchoolofMathema ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27C*-代数上强保k-skew交换性的映射安润玲,高永兰太原理工大学数学学院太原030024Strongk-skewCommutativityPreservingMapsonC*-algebrasRunLingAN,YongLanGAOCollegeofMathematics,TaiyuanUnive ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|