删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

gap度量下线性时变系统的鲁棒性

本站小编 Free考研考试/2021-12-27

gap度量下线性时变系统的鲁棒性 徐晓萍, 石岩月中国海洋大学数学科学学院 青岛 266100 Robustness for Linear Time-varying Systems Using the Gap Metric Xiao Ping XU, Yan Yue SHISchool of Mathematical Sciences, Ocean University of China, Qingdao 266100, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(538 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要在套代数框架下研究了线性时变系统的鲁棒稳定性.当系统和控制器具有gap度量下相互独立的扰动时,应用系统图和控制器图的三角形式,给出了该类系统鲁棒稳定的充分条件.进一步地,还给出了多个系统同时鲁棒稳定的充分条件.数值结果表明结论是有效的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-22
MR (2010):O177.1
基金资助:国家自然科学基金资助项目(11701537);中央高校基本科研业务费(201964007)
作者简介: 徐晓萍,E-mail:xxpouc@163.com;石岩月,E-mail:shiyanyue@163.com
引用本文:
徐晓萍, 石岩月. gap度量下线性时变系统的鲁棒性[J]. 数学学报, 2021, 64(6): 881-894. Xiao Ping XU, Yan Yue SHI. Robustness for Linear Time-varying Systems Using the Gap Metric. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 881-894.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/881


[1] Dale W. N., Smith M. C., Stabilizability and existence of system representations for discrete-time timevarying systems, SIAM J. Control Optim., 1993, 31(b):1538-1557.
[2] Davidson K. R., Nest Algebras, Pitman Research Notes in Mathematics Series, Vol. 191, Longman Scientific and Technical Pub. Co., UK, 1988.
[3] Djouadi S. M., On robustness in the gap metric and coprime factor uncertainty for LTV systems, Syst. Control Lett., 2015, 80:16-22.
[4] Doyle J., Francis B. A., Tannenbaum A. R., Feedback Control Theory, Macmillan Publishing Co., New York, 1990.
[5] Feintuch A., On strong stabilization for linear time-varying systems, Syst. Control Lett., 2005, 54:1091-1095.
[6] Feintuch A., Robust Control Theory in Hilbert Space, Springer, 1998.
[7] Feintuch A., Robustness for time-varying systems, Mathematics of Control, Signals and Systems, 1993, 6:247-263.
[8] Feintuch A., The gap metric for time-varying systems, Syst. Control Lett., 1991, 16:277-279.
[9] Foias C., Georgiou T. T., Smith M. C., Geometric techniques for robust stabilization of linear time-varying systems, In:Proc. of the 29th CDC, December, 1990:2868-2873.
[10] Foias C., Georgiou T. T., Smith M. C., Robust stability of feedback systems:A geometric approach using the gap metric, SIAM J. Control Optim., 1993, 31:1518-1537.
[11] Georgiou T. T., Smith M. C., Optimal robustness in the gap metric, IEEE Trans. Automat. Control, 1990, 35:673-685.
[12] Georgiou T. T., On the computation of the gap metric, Syst. Control Lett., 1988, 11:253-257.
[13] Liu L., Lu Y. F., Coprime representations and feedback stabilization of discrete time-varying linear systems, International Journal of Control, Automation and Systems, 2019, 17(2):425-434.
[14] Liu L., Lu Y. F., Necessary and sufficient conditions to the transitivity in simultaneous stabilisation of time-varying systems, IET Control Theory Appl., 2013, 7(14):1834-1842.
[15] Liu L., Lu Y. F., Transitivity in simultaneous stabilization for a family of time-varying systems, Syst. Control Lett., 2015, 78:55-62.
[16] Lu Y. F., Gong T., On stabilization for discrete linear time-varying systems, Syst. Control Lett., 2011, 60:1024-1031.
[17] Lu Y. F., Xu X. P., The stabilization problem for discrete time-varying linear systems, Syst. Control Lett., 2008, 57(11):936-939.
[18] Quadrat A., The fractional representation approach to synthesis problems:An algebraic analysis viewpoint, Part Ⅱ:Internal stabilization, SIAM J. Control Optim, 2003, 42:300-320.
[19] Qiu L., Davison E. J., Feedback stability under simultaneous gap metric uncertainties in plant and controller, Syst. Control Lett., 1992, 18:9-22.
[20] Smith M. C., On stabilization and existence of coprime factorizations, IEEE Trans. Automat. Control, 1989, 34:1005-1007.
[21] Vidyasagar M., Control System Synthesis:A Factorization Approach, MIT Press, Cambridge, 1985.
[22] Vidyasagar M., The graph metric for unstable plants and robustness estimates for feedback stability, IEEE Trans. Automat. Control, 1984, 29(5):403-418.
[23] Xu X. P., Liu L., Robust stability analysis for linear systems subjected to time-varying uncertainties within the framework of nest algebra, Science Asia, 2018, 44:46-53.
[24] Yu T. Q., Bicoprime factor stability criteria for linear time-varying systems in the nest algebra, International Journal of Control, https://doi.org/10.1080/00207179.2019.1634287, 2019.
[25] Yu T. Q., Chi W., Sufficient conditions for simultaneous stabilization of three linear systems within the framework of nest algebras, Journal of the Franklin Institute, 2014, 351:5310-5325.
[26] Yu T. Q., The transitivity in simultaneous stabilization, Syst. Control Lett., 2011, 60:1-6.
[27] Yu T. Q., Yan H., Simultaneous controller design for time-varying linear systems, Syst. Control Lett., 2011, 60:1032-1037.
[28] Zames G., El-Sakkary A. K., Unstable systems and feedback:the gap metric, In:Proc. 16th Allerton Conf., 1980, 380-385.

[1]郑晓俊, 郇中丹, 刘君. 图像配准中方向场正则化模型的适定性和收敛性[J]. 数学学报, 2021, 64(3): 385-404.
[2]陈员龙, 骆世广. Banach空间中正则非退化异宿环的Lipschitz扰动[J]. 数学学报, 2021, 64(3): 485-492.
[3]张伟, 李云章. Hilbert空间中控制连续g-框架[J]. 数学学报, 2021, 64(3): 515-528.
[4]冯保伟, 李海燕. 带有热记忆的非均匀柔性结构的长时间动力行为[J]. 数学学报, 2020, 63(6): 587-600.
[5]路秋英, 邓桂丰, 刘潇, 朱德明. 连接两个具有一维不稳定流形的双曲鞍点异宿环的稳定性[J]. 数学学报, 2018, 61(5): 761-770.
[6]苏日古嘎, 吴德玉, 阿拉坦仓. 分块算子矩阵闭值域研究[J]. 数学学报, 2018, 61(3): 447-456.
[7]范筱, 蒋英春. 混合范数条件下平移不变信号的非均匀平均采样[J]. 数学学报, 2018, 61(2): 289-300.
[8]孟庆. C*代数l上的左模的半双线性型的稳定性[J]. 数学学报, 2016, 59(1): 99-106.
[9]杜奕秋, 王宇. 三角环上全可导点[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 935-940.
[10]刘磊. 套代数上的高阶全可导点[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 861-870.
[11]纪培胜, 赵英姿. Jensen-二次函数方程及其Hyers—Ulam稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 251-260.
[12]王小焕, 吕广迎. 非局部时滞反应扩散方程行波解的稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 13-28.
[13]丁明玲, 肖祥春, 朱玉灿. Hilbert空间中的K-框架[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1089-1100.
[14]胡业新. 一类拟线性椭圆型方程边值问题的稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1181-1190.
[15]纪培胜, 魏然红, 刘荣荣. Cauchy-三次函数方程及其Hyers-Ulam稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 559-568.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23870
相关话题/数学 系统 代数 空间 动力