删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有非Morsean点的二次可逆系统(r6)的极限环分支

本站小编 Free考研考试/2021-12-27

具有非Morsean点的二次可逆系统(r6)的极限环分支 隋世友, 徐伟骄天津商业大学理学院 天津 300134 Bifurcation of Limit Cycles from the Center of Quadratic Reversible System (r6) with non-Morsean Point Shi You SUI, Wei Jiao XUSchool of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(384 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文考虑了具有非Morsean点的二次可逆系统(r6)在二次多项式扰动下可分支出的极限环的个数.证明了可分支出极限环个数的上确界是2,验证了[Iliev I.D.,Perturbations of quadratic centers,Bull.Sci.Math.,1998,122:107-161]的猜测.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-10-17
MR (2010):O193
基金资助:国家自然科学基金资助项目(11801414)
作者简介: 隋世友,E-mail:sui_shiyou@163.com;徐伟骄,E-mail:weijiao xu@126.com
引用本文:
隋世友, 徐伟骄. 具有非Morsean点的二次可逆系统(r6)的极限环分支[J]. 数学学报, 2021, 64(6): 999-1004. Shi You SUI, Wei Jiao XU. Bifurcation of Limit Cycles from the Center of Quadratic Reversible System (r6) with non-Morsean Point. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 999-1004.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/999


[1] Artés J. C., Llibre J., Schlomiuk D., The geometry of quadratic differential systems with a weak focus of second order, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2006, 16:3127-3194.
[2] Chen F. D., Li C. Z., Llibre J., et al., A unified proof on the weak Hilbert 16th problem for n=2, J. Differ. Equ., 2006, 221:309-342.
[3] Chen G. T., Li C. Z., Liu C. J., et al., The cyclicity of period annuli of some classes of reversible quadratic systems, Discrete Contin. Dyn. Syst., 2006, 16:157-177.
[4] Gautier S., Gavrilov L., Iliev I. D., Perturbations of quadratic centers of genus one, Discrete Contin. Dyn. Syst., 2009, 25:511-535.
[5] Gavrilov L., The infinitesima 16th Hilbert problem in the quadratic case, Invent. Math., 2001, 143:449-497.
[6] Grau M., Mañosas F., Villadelprat J., A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 2011, 363:109-129.
[7] Iliev I. D., Perturbations of quadratic centers, Bull. Sci. Math., 1998, 122:107-161.
[8] Karlin S., Studden W. J., Tchebycheff Systems:With Applications in Analysis and Statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York, 1966.
[9] Li C. Z., Li W. G., Weak Hilbert's 16th problem and the related research (in Chinese), Adv. Math., 2010, 39:513-526.
[10] Li C. Z., Zhang Z. H., Remarks on 16th weak Hilbert problem for n=2, Nonlinearity, 2002, 15:1975-1992.
[11] Pontryagin L., On dynamical systems close to Hamiltonian ones, Zh. Exp. Theor. Phys., 1934, 4:234-238.
[12] Zhao Y. L., On the number of limit cycles in quadratic perturbations of quadratic codimension four centers, Nonlinearity, 2011, 24:2505-2522.
[13] Zhao Y. L., Chen Y. Y., The cyclicity of quadratic reversible systems with a center of genus one and nonMorsean point, Appl. Math. Comput., 2014, 231:268-275.
[14] Zoladek H., Quadratic systems with center and their perturbations,·J. Differ. Equ., 1994, 109:223-273.

[1]陈柳娟, 陈凤德. 食饵具庇护所的基于比率捕食-食饵模型的全局稳定性和分支[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 301-310.
[2]孙宪波. 一类五次扰动Hamiltonian系统的Abel积分零点个数[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 981-992.
[3]邵仪;赵育林;. 一类双中心平面二次系统的Abel积分零点个数[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 451-460.
[4]司成斌;沈伯骞;. 探讨Abel积分零点的一个定理[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 443-450.
[5]张平光;赵申琪. 广义Liénard方程极限环的惟一性问题[J]. Acta Mathematica Sinica, English Series, 2004, 47(6): 1193-120.
[6]陈柳娟;孙建华. 功能函数为kx~θ的捕食-食饵系统的定性分析[J]. Acta Mathematica Sinica, English Series, 2004, 47(4): 793-798.
[7]白敬新. (E_n)系统极限环的相对位置[J]. Acta Mathematica Sinica, English Series, 2004, 47(2): 337-342.
[8]岳喜顺;曾宪武. 关于一类平面n+2次系统极限环唯一性的一个注记[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 369-374.
[9]肖箭;盛立人. Dulac的构造及其应用(Ⅱ)[J]. Acta Mathematica Sinica, English Series, 2002, 45(5): 953-958.
[10]刘一戎. 拟二次系统的广义焦点量与极限环分枝[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 671-682.
[11]陈柳娟;孙建华. 一类Holling功能性反应模型极限环的唯一性[J]. Acta Mathematica Sinica, English Series, 2002, 45(2): 383-388.
[12]张平光. 具有二个焦点的二次系统极限环的分布与个数[J]. Acta Mathematica Sinica, English Series, 2001, 44(1): 37-44.
[13]周毓荣. 比较发散量积分法的改进[J]. Acta Mathematica Sinica, English Series, 2000, 43(3): 463-470.
[14]白敬新. 一类具有不少于“3/8n~2”族极限环的平面n次系统[J]. Acta Mathematica Sinica, English Series, 2000, 43(2): 245-252.
[15]周天寿;张子范;郑作环;张锁春. 俄勒冈振子极限环的唯一性[J]. Acta Mathematica Sinica, English Series, 1999, 42(6): 961-964.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23879
相关话题/系统 天津 天津商业大学 理学院 数学