摘要本文讨论了一个可积的两分量Camassa-Holm方程组的周期柯西问题,该模型可看作是修正Camassa-Holm方程的两分量推广.首先给出了显式的周期尖峰孤子解.其次,建立了强解的爆破准则以及强解爆破时初值满足的几个条件. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-05-19 | | 基金资助:国家自然科学基金资助项目(11561059);天水师范学院“青蓝”人才工程基金资助项目
| 作者简介: 张颖,E-mail:zwbandzy@163.com;彭聪明,E-mail:pecm1980@163.com |
[1] Camassa R., Holm D. D., An integrable shallow water equation with peaked solitons, Physical Review Letters, 1993, 71(11):1661-1664. [2] Chang X. K., Hu X. B., Szmigielski J., Multipeakons of a two-component modified Camassa-Holm equation and the relation with the finite Kac-van Moerbeke lattice, Adv. Math., 2016, 299:1-35. [3] Chou K. S., Qu C. Z., Integrable equations arising from motions of plane curves I, Physica D, 2002, 162(1-2):9-33. [4] Constantin A., Escher J., Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Communications in Pure and Applied Mathematics, 1998, 51(5):475-504. [5] Constantin A., Escher J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 1998, 181(2):229-243. [6] Constantin A., Kolev H., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 2003, 78:787-804. [7] Constantin A., McKean H. P., A shallow water equation on the circle, Communications in Pure and Applied Mathematics, 1999, 52(8):949-982. [8] Constantin A., Escher J., On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Mathematische Zeitschrift, 2000, 233(1):75-91. [9] Constantin A., Strauss W. A., Stability of peakons, Comm. Pure Appl. Math., 2000, 53:603-610. [10] Constantin A., Strauss W. A., Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 2000, 270:140-148. [11] Danchin R., A few remarks on the Camassa-Holm equation, Differ. Integral Equ., 2001, 14(8):953-988. [12] Dai H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 1998, 127:193-207. [13] Fu Y., Gui G. L., Liu Y., et al., On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity, J. Differential Equations, 2013, 255:1905-1938. [14] Fuchssteiner B., Some tricks from the symmetry-toolbox for nonlinear equations:generalizations of the Camassa-Holm equation, Physica D, 1996, 95:229-243. [15] Fuchssteiner B., Fokas A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 1981/1982, 4(1):47-66. [16] Gui G. L., Liu Y., Olver P. J., et al., Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 2013, 319:731-759. [17] Johnson R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid. Mech., 2002, 455:63-82. [18] Khesin B., Misio lek G., Euler equations on homogeneous spaces and Virasoro orbits, Advances in Mathematics, 2003, 176(1):116-144. [19] Kouranbaeva S., The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, Journal of Mathematical Physics, 1999, 40(2):857-868. [20] Lenells J., Stability of periodic peakons, Int. Math. Res. Not., 2004, 10:485-499. [21] Lenells J., A variational approach to the stability of periodic peakons, J. Nonl. Math. Phys., 2004, 11:151-163. [22] Li X. T., The Cauchy problem and blow-up phenomena of a new integrable two-component Camassa-Holm system, Nonlinear Anal., 2016, 132:25-46. [23] Liu Y., Qu C. Z., Zhang Y., Stability of periodic peakons for the modified μ-Camassa-Holm equation, Physica D, 2013, 250:66-74. [24] Mi Y. S., Mu C. L., Well-posedness and analyticity for an integrable two-component system with cubic nonlinearity, J. Hyperbolic Differ. Equ., 2013, 10(04):703-723. [25] Misio lek G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, Journal of Geometry and Physics, 1998, 24(3):203-208. [26] Olver P. J., Rosenau P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 1996, 53:1900-1906. [27] Qiao Z. J., A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 2006, 47:112701. [28] Qu C. Z., Fu Y., Liu Y., Well-posedness, wave breaking and peakons for a modified μ-Camassa-Holm equation, Journal of Functional Analysis, 2014, 266:433-477. [29] Qu C. Z., Liu X. C., Liu Y., Stability of peakons for an integrable modified Camassa-Holm equation, Comm. Math. Phys., 2013, 322:967-997. [30] Song J. F., Qu C. Z., Qiao Z. J., A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 2011, 52:013503. [31] Tian K., Liu Q. P., Tri-Hamiltonian duality between the Wadati-Konno-Ichikawa hierarchy and the Song-Qu-Qiao hierarchy, J. Math. Phys., 2013, 54(4):043513. [32] Yan K., Qiao Z. J., Zhang Y. F, Blow-up phenomena for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions, J. Differential Equations, 2015, 259:6644-6671. [33] Zhu M., Zhang S. H., On the blow-up of solutions to the periodic modified integrable Camassa-Holm equation, Discrete and Continuous Dynamical Systems, 2016, 36:2347-2364.
|
[1] | 钟新. 具有零热传导和真空的非正压磁流体力学方程的L∞连续性[J]. 数学学报, 2021, 64(5): 705-720. | [2] | 叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938. | [3] | 杜金金, 王昊. 推广的GDGH2系统的自相似解及爆破现象[J]. 数学学报, 2019, 62(1): 137-150. | [4] | 夏滨. 带逆平方势的非线性Schrödinger方程的有限时间性态[J]. 数学学报, 2017, 60(5): 799-814. | [5] | 徐润章, 张明有, 姜晓丽, 王雪梅, 沈继红. 基于交叉变分的非线性Klein-Gordon方程解的整体存在和爆破[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 427-444. | [6] | 张颖, 张江红. 广义两分量Camassa-Holm方程的柯西问题[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 923-934. | [7] | 李中平, 穆春来. 一个具有耦合边界流的热方程组的爆破估计的注解[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 197-202. | [8] | 周军. 一类具有局部化源和吸收项的抛物系统解的整体存在与爆破[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 67-86. | [9] | 宋小军, 米永生, 穆春来. 一类双重退化抛物方程组解的整体存在与爆破[J]. Acta Mathematica Sinica, English Series, 2012, (2): 281-292. | [10] | 原保全. Boussinesq方程组在Besov空间中局部解的存在性和延拓准则[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 455-468. | [11] | 丁丹平, 石敏, 毕云蕊. 广义超弹性杆方程解的爆破[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1111-1118. | [12] | 舒级张健. 带调和势的非线性Schrodinger方程整体解存在的最佳条件[J]. Acta Mathematica Sinica, English Series, 2009, 25(4): 0-0. | [13] | 刘文军1王明新. 一类非线性退化波动方程解的爆破[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1213-122. | [14] | 王颖;穆春来;. 一类Boussinesq方程解的爆破和不稳定性[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 699-710. | [15] | 李晓光;张健;. 二维空间中一类具临界幂的耦合非线性波动系统的爆破解[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 769-778. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23871
具有非Morsean点的二次可逆系统(r6)的极限环分支隋世友,徐伟骄天津商业大学理学院天津300134BifurcationofLimitCyclesfromtheCenterofQuadraticReversibleSystem(r6)withnon-MorseanPointShiYouSUI, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27锥b-度量空间中的三元重合点与三元不动点定理罗婷1,朱传喜21.江西财经大学信息管理学院南昌330032;2.南昌大学数学系南昌330031TripledCoincidencePointandTripledFixedPointTheoremsinconeb-metricSpacesTingLUO1, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27穿孔度量空间Gromov双曲性的几何特征周青山1,李浏兰2,李希宁31.佛山科学技术学院数学与大数据学院佛山528000;2.衡阳师范学院数学与统计学院衡阳421001;3.中山大学数学学院(珠海)珠海519082GeometricCharacterizationsofGromovHyperboli ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界王泽群1,魏明权2,张兴松3,燕敦验41.东北财经大学数据科学与人工智能学院大连116025;2.信阳师范学院数学与统计学院信阳464000;3.中国人民大学附属中学朝阳学校北京100028;4.中国科学院大学数学科学学院北京100 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27复Banach空间?p()(1p<)的Mazur-Ulam性质王瑞东,周文乔天津理工大学理学院天津300384TheMazurUlamPropertyforComplexBanachSpace?p()(1p<)Ru ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双线性Fourier乘子在变指标Besov空间的有界性刘茵南阳师范学院数学与统计学院南阳473061TheBoundednessofBilinearFourierMultiplierOperatorsonVariableExponentBesovSpacesYinLIUSchoolofMathema ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Fock空间上对偶Toeplitz算子的交换性黄穗,王伟重庆师范大学数学科学学院重庆401331CommutingDualToeplitzOperatorsontheOrthogonalComplementoftheFockSpaceSuiHUANG,WeiWANGSchoolofMathemati ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中渐近非扩张映射的广义粘性隐式双中点法则王元恒,李参参浙江师范大学数学与计算机科学学院金华321004TheGeneralizedViscosityImplicitDoubleMidpointRuleforAsymptoticallyNon-expansiveMappingsinBa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27积分估计与正规权Dirichlet空间上的Cesro型算子唐鹏程,吕睿昕,张学军湖南师范大学数学与统计学院长沙410006AnIntegralEstimateandCesroTypeOperatorsonNormalWeightDirichletSpacesPengC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27四元数Hilbert空间中近似对偶与对偶标架张伟1,李云章21.河南财经政法大学数学与信息科学学院郑州450046;2.北京工业大学理学部数学学院北京100124ApproximatelyDualandDualFramesinQuaternionicHilbertSpacesWeiZHANG1,Yu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|