摘要利用多变量Nevanlinna值分布理论与Nevanlinna理论的差分模拟结果,讨论了几类多变量复域Fermat型偏微差分方程组解的性质,得到了方程组有限超越整函数解的存在性条件与具体形式,推广改进了高凌云、曹廷彬、刘凯等人的结果,给出例子说明多变量与单变量方程组有限级超越整函数解之间的差异. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-04-28 | | 基金资助:国家自然科学基金资助项目(11561033,11371225);江西省自然科学基金(20181BAB201001)及江西省教育厅科技项目(GJJ190876,GJJ191042,GJJ190895)
| 作者简介: 徐洪焱,E-mail:xuhongyanxidian@126.com;杨连忠,E-mail:lzyang@sdu.edu.cn |
[1] Biancofiore A., Stoll W., Another proof of the lemma of the logarithmic derivative in several complex variables, In:Fornaess, J. (ed.) Recent developments in several complex variables, Princeton University Press, Princeton, 1981:29-45. [2] Cao T. B., Xu L., Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 2018, 15:1-14. [3] Cao T. B., Xu L., Logarithmic difference lemma in several complex variables and partial difference equations, Ann. Mat. Pura Appl., 2020, 199(2):767-794. [4] Cao T. B., Korhonen R. J., A new version of the second main theorem for meromorphic mappings intersecting hyper planes in several complex variables, J. Math. Anal. Appl., 2016, 444:1114-1132. [5] Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane, Ramanujan J., 2008, 16(1):105-129. [6] Gao L. Y., Entire solutions of two types of systems of complex differential-difference equations, Acta Math. Sinica, Chinese Series, 2016, 59:677-685. [7] Gross F., On the equation fn+gn=1, Bull. Amer. Math. Soc., 1996, 72:86-88. [8] Halburd R. G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314:477-487. [9] Halburd R. G., Korhonen R. J., Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London Math. Soc., 2007, 9:443-474. [10] Halburd R. G., Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31(2):463-478. [11] Hu P. C., Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var., 1995, 27:269-285. [12] Hu P. C., Yang C. C., Uniqueness of meromorphic functions on Cm, Complex Variables, 1996, 30:235-270. [13] Hu P. C., Li P., Yang C. C., Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, Vol. 1. Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. [14] Korhonen R. J., A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory, 2012, 12(1):343-361. [15] Liu K., Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 2009, 359:384-393. [16] Liu K., Cao T. B., Cao H. Z., Entire solutions of Fermat type differential-difference equations, Arch. Math., 2012, 99:147-155. [17] Liu K., Yang L. Z., On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory, 2013, 13:433-447. [18] Liu K., Cao T. B., Entire solutions of Fermat type difference differential equations, Electron. J. Diff. Equ., 2013, 59:1-10. [19] Liu M. L., Gao L. Y., Transcendental solutions of systems of complex differential-difference equations, Sci. Sinica Mathematica, 2019, 49:1-22. [20] Montel P., Lecons sur les Familles Normales de Fonctions Analytiques et Leurs Applications, Gauthier-Villars, Paris, 1927, 135-136. [21] Pólya G., On an integral function of an integral function, J. Lond. Math. Soc., 1926, 1:12-15. [22] Rieppo J., On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 2007, 32(1):151-170. [23] Ronkin L. I., Introduction to the Theory of Entire Functions of Several Variables, Moscow:Nauka 1971(Russian); American Mathematical Society, Providence, 1974. [24] Stoll W., Holomorphic Functions of Finite Order in Several Complex Variables, American Mathematical Society, Providence, 1974. [25] Taylor R., Wiles A., Ring-theoretic properties of certain Hecke algebra, Ann. Math., 1995, 141:553-572. [26] Wiles A., Modular elliptic curves and Fermats last theorem, Ann. Math., 1995, 141:443-551. [27] Xu L., Cao T. B., Correction to:solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 2020, 17, Art. 8, pages, 1-4. [28] Yang C. C., A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc., 1970, 26:332-334. [29] Yang C. C., Li P., On the transcendental solutions of a certain type of nonlinear differential equations, Arch Math. Basel, 2004, 82:442-448.
|
[1] | 郑晓俊, 郇中丹, 刘君. 图像配准中方向场正则化模型的适定性和收敛性[J]. 数学学报, 2021, 64(3): 385-404. | [2] | 吴丽镐, 张然然, 黄志波. 一类微分差分方程的整函数解[J]. 数学学报, 2021, 64(3): 471-478. | [3] | 杜金金, 王昊. 推广的GDGH2系统的自相似解及爆破现象[J]. 数学学报, 2019, 62(1): 137-150. | [4] | 曾翠萍, 邓炳茂, 方明亮. 复微分-差分方程组的整函数解[J]. 数学学报, 2019, 62(1): 123-136. | [5] | 凌博, 刘永平. 用指数型整函数的最佳限制逼近[J]. 数学学报, 2017, 60(3): 389-400. | [6] | 高凌云. 两类复微分-差分方程组的整函数解[J]. 数学学报, 2016, 59(5): 677-684. | [7] | 刘慧芳, 毛志强. 整函数与其差分算子的唯一性定理[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 825-832. | [8] | 胡盛清, 王硕. 五体问题的中心构型及其相对平衡解[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1199-1202. | [9] | 彭艳芳, 李必文. 一类奇异椭圆型方程变号解的存在性及非存在性[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 281-294. | [10] | 周文书, 魏晓丹, 秦绪龙. 一类奇异半线性椭圆方程解的不存在性[J]. Acta Mathematica Sinica, English Series, 2014, 57(1): 125-130. | [11] | 马如云, 陈瑞鹏, 李杰梅. 非线性Neumann问题正解的存在性[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 289-300. | [12] | 陈国旺. 一类N维非线性波动方程的Cauchy问题[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 797-810. | [13] | 姚庆六. 奇异非线性边值问题的经典Agarwal-O'Regan方法[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 903-918. | [14] | 王婷婷. Fibonacci 数列倒数的无穷和[J]. Acta Mathematica Sinica, English Series, 2012, 55(3): 517-524. | [15] | 王晋勋, 李兴民. 左 O-解析函数紧致奇点的可去性[J]. Acta Mathematica Sinica, English Series, 2012, (2): 231-234. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23872
具有非Morsean点的二次可逆系统(r6)的极限环分支隋世友,徐伟骄天津商业大学理学院天津300134BifurcationofLimitCyclesfromtheCenterofQuadraticReversibleSystem(r6)withnon-MorseanPointShiYouSUI, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有对数非线性项的回火分数p-Laplace系统的驻波解王国涛1,2,侯文文1,张丽红1,RaviP.AGARWAL3,21.山西师范大学数学与计算机科学学院临汾041004;2.NonlinearAnalysisandAppliedMathematics(NAAM)ResearchGroup,De ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非自治随机FitzHugh-Nagumo系统的随机一致指数吸引子韩宗飞,周盛凡浙江师范大学数学与计算机科学学院金华321004RandomUniformExponentialAttractorforNon-autonomousStochasticFitzHugh-NagumoSystemZongFe ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Zalcman引理在随机迭代函数族动力系统中的应用黄小杰1,2,刘芝秀11南昌工程学院理学院江西330099;2复旦大学计算机科学技术学院上海200433AnApplicationofZalcmanLemmainDynamicalSystemsofRandomIteratedFunctionFami ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|