删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Hilbert格上分数阶微分变分不等式极大解与极小解的存在性

本站小编 Free考研考试/2021-12-27

Hilbert格上分数阶微分变分不等式极大解与极小解的存在性 王月虎1, 张从军21. 南京财经大学管理科学与工程学院 南京 210023;
2. 南京财经大学应用数学学院 南京 210023 Existence of Maximal and Minimal Solutions to Fractional Differential Variational Inequalities on Hilbert Lattices Yue Hu WANG1, Cong Jun ZHANG21. School of Management Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China;
2. School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(627 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文提出一种研究分数阶微分变分不等式的半序方法.在Hilbert格上利用序不动点定理证明了分数阶微分变分不等式极大解与极小解的存在性,获得一些新结果.这些半序方法与最近有关文献中的拓扑不动点定理和离散序列逼近法具有本质不同,能够有效削弱相关函数的连续性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-02
MR (2010):O177.91
基金资助:国家自然科学基金(72001101,11401296);江苏省自然科学基金(BK20171041);江苏高校哲学社会学研究项目(2017SJB0238)及江苏省高校自然科学研究面上项目(16KJB110009);江苏省青蓝工程;南京财经大学青年****支持计划
通讯作者:王月虎,E-mail:weapon789@163.comE-mail: weapon789@163.com
作者简介: 张从军,E-mail:zcjyysxx@163.com
引用本文:
王月虎, 张从军. Hilbert格上分数阶微分变分不等式极大解与极小解的存在性[J]. 数学学报, 2021, 64(6): 933-946. Yue Hu WANG, Cong Jun ZHANG. Existence of Maximal and Minimal Solutions to Fractional Differential Variational Inequalities on Hilbert Lattices. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 933-946.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/933


[1] Aubin J. P., Cellina A., Differential Inclusions, Springer, New York, 1984.
[2] Carl S., Heikkila S., Fixed Point Theory in Ordered Sets and Applications:From Differential and Integral Equations to Game Theory, Springer-Verlag, New York, 2010.
[3] Chen X., Wang Z., Differential variational inequality approach to dynamic games with shared constraints, Math. Program. Ser. A, 2014, 146(1):379-408.
[4] Friesz T. L., Rigdon M. A., Mookherjee R., Differential variational inequalities and shipper dynamic oligopolistic network competition, Transp. Res. Part B:Methodol., 2006, 40:480-503.
[5] Jiang Y., Wei Z., Weakly asymptotic stability for fractional delay differential mixed variational inequalities, Appl. Math. Optim., 2019. https://doi.org/10.1007/s00245-019-09645-3.
[6] Kamemskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space, Water de Gruyter, Berlin, 2001.
[7] Ke T. D., Loi N. V., Obukhovskii V., Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 2015, 18(3):531-553.
[8] Kumar S., Mild solution and fractional optimal control of semilinear system with fixed delay, J. Optim. Theory Appl., 2017, 174(1):108-121.
[9] Li J., Existence of continuous solutions of nonlinear Hammerstein integral equations proved by fixed point theorems on posets, J. Nonlinear Convex Anal., 2017, 17(7):1311-1323.
[10] Li X. S., Huang N. J., O'Regan D., Differential mixed variational inequalities in finite dimensional spaces, Nonlinear Anal., 2010, 72(9):3875-3886.
[11] Liu Z. H., Migórski S., Zeng S. D., Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differ. Equ., 2017, 263(7):3989-4006.
[12] Liu Z. H., Zeng S. D., Motreanu D., Evolutionary problems driven by variational inequalities, J. Differ. Equ., 2016, 260(9):6787-6799.
[13] Liu Z. H., Zeng S. D., Motreanu D., Partial differential hemivariational inequalities, Adv. in Nonlinear Anal., 2018, 7(4):571-586.
[14] Lu L., Liu Z. H., Motreanu D., Existence results of semilinear differential variational inequalities without compactness, Optimization, 2019, 68(5):1017-1035.
[15] Lu L., Liu Z. H., Obukhovskii V., Second order differential variational inequalities involving anti-periodic boundary value conditions, J. Math. Anal. Appl., 2019, 473(2):846-865.
[16] Migórski S., Zeng S., Mixed variational inequalities driven by fractional evolutionary equations, Acta Math. Sci. Ser. B, 2019, 39(2):461-468.
[17] Nishimura H., Ok E. A., Solvability of variational inequalities on Hilbert lattices, Math. Oper. Res., 2012, 37(4):608-625.
[18] Noor M. A., A new iterative method for monotone mixed variational inequalities, Math. Comput. Modelling, 1997, 26(7):29-34.
[19] Pang J. S., Stewart D. E., Differential variational inequalities, Math. Program. Ser. A, 2008, 113(2):345-424.
[20] Reddy B. D., Mixed variational inequalities arising in elastoplasticity, Nonlinear Anal., 1992, 19(11):1071-1089.
[21] Reddy B. D., Tomarelli F., The obstacle problem for an elastoplastic body, Appl. Math. Optim., 1990, 21(1):89-110.
[22] Wang X., Huang N. J., Differential vector variational inequalities in finite-dimensional spaces, J. Optim. Theory Appl., 2013, 158(1):109-129.
[23] Wang X., Qi Y. W., Tao C. Q., et al., A class of differential fuzzy variational inequalities in finite-dimensional spaces, Optim. Lett., 2017, 11(8):1593-1607.
[24] Wang X., Tang G. J., Li X. S., et al., Differential quasi-variational inequalities in finite dimensional spaces, Optimization, 2015, 64(4):895-907.
[25] Wang Y. H., Liu B. Q., Order-preservation properties of solution mapping for parametric equilibrium problems and their applications, J. Optim. Theory Appl., 2019, 183(3):881-901.
[26] Wang Y. H., Liu B. Q., Upper order-preservation of the solution correspondence to vector equilibrium problems, Optimization, 2019, 68(9):1769-1789.
[27] Zeng B., Liu Z. H., Existence results for impulsive feedback control systems, Nonlinear Anal. Hybrid Syst., 2019, 33:1-16.

[1]王元恒, 李参参. Banach空间中渐近非扩张映射的广义粘性隐式双中点法则[J]. 数学学报, 2021, 64(4): 601-612.
[2]蔡钢. Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法[J]. 数学学报, 2019, 62(5): 765-776.
[3]司马傲蕾, 贺飞, 路宁. 类拟b-距离空间中几类循环压缩映射不动点定理[J]. 数学学报, 2019, 62(3): 427-440.
[4]李凤英, 李秉宇, 张世清. 广义山路引理的一些应用[J]. 数学学报, 2018, 61(3): 511-518.
[5]柳鸠, 廖家锋, 唐春雷. 一类具有非局部项和临界项椭圆方程的正解[J]. 数学学报, 2018, 61(3): 411-430.
[6]刘展, 朱传喜. Banach空间中一类二元算子方程的可解性及应用[J]. 数学学报, 2017, 60(3): 415-426.
[7]刘洁, 赵秀兰. Banach空间中带误差修改的不动点迭代逼近[J]. 数学学报, 2016, 59(6): 767-774.
[8]张丽娟, 佟慧. 不动点集和零点集公共元的强弱收敛性[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 601-612.
[9]张石生, 王林, 赵云河, 王刚. 多值Bregman全拟渐近非扩张映像的强收敛性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 213-226.
[10]朴勇杰. 锥度量空间上混合型膨胀映射族的唯一公共不动点[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1041-1046.
[11]赵增勤, 毛锦秀. 序Banach空间中某些二元算子的不动点及其应用[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 931-938.
[12]李永祥. 含时滞导数项的二阶中立型泛函微分方程的正周期解[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 505-516.
[13]刘建辉, 朱传喜, 吴照奇. 半序概率度量空间中压缩条件下的三元重合点定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 517-526.
[14]左占飞. 渐近非扩张型映射的不动点迭代和Δ-收敛定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 387-394.
[15]彭定涛, 俞建, 修乃华. 几类非线性问题解的通有唯一性[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 373-386.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23873
相关话题/数学 空间 分数 南京财经大学 公共