摘要本文提出一种研究分数阶微分变分不等式的半序方法.在Hilbert格上利用序不动点定理证明了分数阶微分变分不等式极大解与极小解的存在性,获得一些新结果.这些半序方法与最近有关文献中的拓扑不动点定理和离散序列逼近法具有本质不同,能够有效削弱相关函数的连续性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-05-02 | | 基金资助:国家自然科学基金(72001101,11401296);江苏省自然科学基金(BK20171041);江苏高校哲学社会学研究项目(2017SJB0238)及江苏省高校自然科学研究面上项目(16KJB110009);江苏省青蓝工程;南京财经大学青年****支持计划
| 通讯作者:王月虎,E-mail:weapon789@163.comE-mail: weapon789@163.com | 作者简介: 张从军,E-mail:zcjyysxx@163.com |
[1] Aubin J. P., Cellina A., Differential Inclusions, Springer, New York, 1984. [2] Carl S., Heikkila S., Fixed Point Theory in Ordered Sets and Applications:From Differential and Integral Equations to Game Theory, Springer-Verlag, New York, 2010. [3] Chen X., Wang Z., Differential variational inequality approach to dynamic games with shared constraints, Math. Program. Ser. A, 2014, 146(1):379-408. [4] Friesz T. L., Rigdon M. A., Mookherjee R., Differential variational inequalities and shipper dynamic oligopolistic network competition, Transp. Res. Part B:Methodol., 2006, 40:480-503. [5] Jiang Y., Wei Z., Weakly asymptotic stability for fractional delay differential mixed variational inequalities, Appl. Math. Optim., 2019. https://doi.org/10.1007/s00245-019-09645-3. [6] Kamemskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space, Water de Gruyter, Berlin, 2001. [7] Ke T. D., Loi N. V., Obukhovskii V., Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 2015, 18(3):531-553. [8] Kumar S., Mild solution and fractional optimal control of semilinear system with fixed delay, J. Optim. Theory Appl., 2017, 174(1):108-121. [9] Li J., Existence of continuous solutions of nonlinear Hammerstein integral equations proved by fixed point theorems on posets, J. Nonlinear Convex Anal., 2017, 17(7):1311-1323. [10] Li X. S., Huang N. J., O'Regan D., Differential mixed variational inequalities in finite dimensional spaces, Nonlinear Anal., 2010, 72(9):3875-3886. [11] Liu Z. H., Migórski S., Zeng S. D., Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differ. Equ., 2017, 263(7):3989-4006. [12] Liu Z. H., Zeng S. D., Motreanu D., Evolutionary problems driven by variational inequalities, J. Differ. Equ., 2016, 260(9):6787-6799. [13] Liu Z. H., Zeng S. D., Motreanu D., Partial differential hemivariational inequalities, Adv. in Nonlinear Anal., 2018, 7(4):571-586. [14] Lu L., Liu Z. H., Motreanu D., Existence results of semilinear differential variational inequalities without compactness, Optimization, 2019, 68(5):1017-1035. [15] Lu L., Liu Z. H., Obukhovskii V., Second order differential variational inequalities involving anti-periodic boundary value conditions, J. Math. Anal. Appl., 2019, 473(2):846-865. [16] Migórski S., Zeng S., Mixed variational inequalities driven by fractional evolutionary equations, Acta Math. Sci. Ser. B, 2019, 39(2):461-468. [17] Nishimura H., Ok E. A., Solvability of variational inequalities on Hilbert lattices, Math. Oper. Res., 2012, 37(4):608-625. [18] Noor M. A., A new iterative method for monotone mixed variational inequalities, Math. Comput. Modelling, 1997, 26(7):29-34. [19] Pang J. S., Stewart D. E., Differential variational inequalities, Math. Program. Ser. A, 2008, 113(2):345-424. [20] Reddy B. D., Mixed variational inequalities arising in elastoplasticity, Nonlinear Anal., 1992, 19(11):1071-1089. [21] Reddy B. D., Tomarelli F., The obstacle problem for an elastoplastic body, Appl. Math. Optim., 1990, 21(1):89-110. [22] Wang X., Huang N. J., Differential vector variational inequalities in finite-dimensional spaces, J. Optim. Theory Appl., 2013, 158(1):109-129. [23] Wang X., Qi Y. W., Tao C. Q., et al., A class of differential fuzzy variational inequalities in finite-dimensional spaces, Optim. Lett., 2017, 11(8):1593-1607. [24] Wang X., Tang G. J., Li X. S., et al., Differential quasi-variational inequalities in finite dimensional spaces, Optimization, 2015, 64(4):895-907. [25] Wang Y. H., Liu B. Q., Order-preservation properties of solution mapping for parametric equilibrium problems and their applications, J. Optim. Theory Appl., 2019, 183(3):881-901. [26] Wang Y. H., Liu B. Q., Upper order-preservation of the solution correspondence to vector equilibrium problems, Optimization, 2019, 68(9):1769-1789. [27] Zeng B., Liu Z. H., Existence results for impulsive feedback control systems, Nonlinear Anal. Hybrid Syst., 2019, 33:1-16.
|
[1] | 王元恒, 李参参. Banach空间中渐近非扩张映射的广义粘性隐式双中点法则[J]. 数学学报, 2021, 64(4): 601-612. | [2] | 蔡钢. Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法[J]. 数学学报, 2019, 62(5): 765-776. | [3] | 司马傲蕾, 贺飞, 路宁. 类拟b-距离空间中几类循环压缩映射不动点定理[J]. 数学学报, 2019, 62(3): 427-440. | [4] | 李凤英, 李秉宇, 张世清. 广义山路引理的一些应用[J]. 数学学报, 2018, 61(3): 511-518. | [5] | 柳鸠, 廖家锋, 唐春雷. 一类具有非局部项和临界项椭圆方程的正解[J]. 数学学报, 2018, 61(3): 411-430. | [6] | 刘展, 朱传喜. Banach空间中一类二元算子方程的可解性及应用[J]. 数学学报, 2017, 60(3): 415-426. | [7] | 刘洁, 赵秀兰. Banach空间中带误差修改的不动点迭代逼近[J]. 数学学报, 2016, 59(6): 767-774. | [8] | 张丽娟, 佟慧. 不动点集和零点集公共元的强弱收敛性[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 601-612. | [9] | 张石生, 王林, 赵云河, 王刚. 多值Bregman全拟渐近非扩张映像的强收敛性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 213-226. | [10] | 朴勇杰. 锥度量空间上混合型膨胀映射族的唯一公共不动点[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1041-1046. | [11] | 赵增勤, 毛锦秀. 序Banach空间中某些二元算子的不动点及其应用[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 931-938. | [12] | 李永祥. 含时滞导数项的二阶中立型泛函微分方程的正周期解[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 505-516. | [13] | 刘建辉, 朱传喜, 吴照奇. 半序概率度量空间中压缩条件下的三元重合点定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 517-526. | [14] | 左占飞. 渐近非扩张型映射的不动点迭代和Δ-收敛定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 387-394. | [15] | 彭定涛, 俞建, 修乃华. 几类非线性问题解的通有唯一性[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 373-386. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23873
锥b-度量空间中的三元重合点与三元不动点定理罗婷1,朱传喜21.江西财经大学信息管理学院南昌330032;2.南昌大学数学系南昌330031TripledCoincidencePointandTripledFixedPointTheoremsinconeb-metricSpacesTingLUO1, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27穿孔度量空间Gromov双曲性的几何特征周青山1,李浏兰2,李希宁31.佛山科学技术学院数学与大数据学院佛山528000;2.衡阳师范学院数学与统计学院衡阳421001;3.中山大学数学学院(珠海)珠海519082GeometricCharacterizationsofGromovHyperboli ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界王泽群1,魏明权2,张兴松3,燕敦验41.东北财经大学数据科学与人工智能学院大连116025;2.信阳师范学院数学与统计学院信阳464000;3.中国人民大学附属中学朝阳学校北京100028;4.中国科学院大学数学科学学院北京100 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27复Banach空间?p()(1p<)的Mazur-Ulam性质王瑞东,周文乔天津理工大学理学院天津300384TheMazurUlamPropertyforComplexBanachSpace?p()(1p<)Ru ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双线性Fourier乘子在变指标Besov空间的有界性刘茵南阳师范学院数学与统计学院南阳473061TheBoundednessofBilinearFourierMultiplierOperatorsonVariableExponentBesovSpacesYinLIUSchoolofMathema ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Fock空间上对偶Toeplitz算子的交换性黄穗,王伟重庆师范大学数学科学学院重庆401331CommutingDualToeplitzOperatorsontheOrthogonalComplementoftheFockSpaceSuiHUANG,WeiWANGSchoolofMathemati ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中渐近非扩张映射的广义粘性隐式双中点法则王元恒,李参参浙江师范大学数学与计算机科学学院金华321004TheGeneralizedViscosityImplicitDoubleMidpointRuleforAsymptoticallyNon-expansiveMappingsinBa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27积分估计与正规权Dirichlet空间上的Cesro型算子唐鹏程,吕睿昕,张学军湖南师范大学数学与统计学院长沙410006AnIntegralEstimateandCesroTypeOperatorsonNormalWeightDirichletSpacesPengC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27四元数Hilbert空间中近似对偶与对偶标架张伟1,李云章21.河南财经政法大学数学与信息科学学院郑州450046;2.北京工业大学理学部数学学院北京100124ApproximatelyDualandDualFramesinQuaternionicHilbertSpacesWeiZHANG1,Yu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27指数权Bergman空间Ap和A间的算子何忠华1,王晓峰2,刘柚岐21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006ToeplitzOperatorsBetweenBergmanSpaces ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|