删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带记忆项反应扩散方程的吸引子

本站小编 Free考研考试/2021-12-27

带记忆项反应扩散方程的吸引子 谢永钦, 张江卫, 黄创霞长沙理工大学数学与统计学院 长沙 410114 Attractors for Reaction-diffusion Equations with Memory Yong Qin XIE, Jiang Wei ZHANG, Chuang Xia HUANGSchool of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(546 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文提出了一类双积空间压缩半群方法(见定理2.10),可作为另一种研究非线性发展方程渐近行为的途径.作为应用,我们考虑了带有衰退记忆项的反应扩散方程,证明了当初值属于L2(Ω)×Lμ2(R;H01(Ω))时所对应解半群在H01(Ω)×Lμ2(R;H01(Ω))中的渐近紧性.因而得到了双空间全局吸引子A的存在性.此外,通过使用新的算子分解方法,我们证明了解的渐近正则性,得到了压缩函数.值得注意的是,非线性项f满足任意阶指数增长且全局吸引子ADA)×Lμ2(R;DA)).
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-20
MR (2010):O193
基金资助:国家自然科学基金资助项目(11101053,71471020);湖南省研究生科研创新项目(CX20200891)
通讯作者:张江卫,E-mail:zjwmath@163.comE-mail: zjwmath@163.com
作者简介: 谢永钦,E-mail:xieyqmath@csust.edu.cn;黄创霞,E-mail:cxiahuang@126.com
引用本文:
谢永钦, 张江卫, 黄创霞. 带记忆项反应扩散方程的吸引子[J]. 数学学报, 2021, 64(6): 979-990. Yong Qin XIE, Jiang Wei ZHANG, Chuang Xia HUANG. Attractors for Reaction-diffusion Equations with Memory. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 979-990.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/979


[1] Aifantis E., On the problem of diffusion in solids, Acta Mechanica, 1980, 37:265-296.
[2] Babin A. V., Vishik M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[3] Chepyzhov V. V., Gattib S., Grassellic M., et al., Trajectory and global attractors for evolution equations with fading memory, Appl. Math. Lett., 2006, 19:87-96.
[4] Chepyzhov V. V., Miranville A., On trajectory and global attractors for semilinear heat equations with fading memory, Indiana Univ. Math. J., 2006, 55:119-167.
[5] Cholewa J. W., Dlotko T., Bi-spaces global attractors in abstract parabolic equations, Evol. Equations, Banach Center Publications, 2003, 60:13-26.
[6] Conti M., Gatti S., Grasselli M., et al., Two-dimensional reaction-diffusion equations with memory, Quart. Appl. Math., 2010, 68:607-643.
[7] Dafermos C. M., Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 1970, 37:297-308.
[8] Gatti S., Grasselli M., Pata V., Lyapunov functionals for reaction-diffusion equations with memory, Math., Methods Appl. Sci., 2005, 28:1725-1735.
[9] Giorgi C., Naso M. G., Pata V., Exponential stability in linear heat conduction with memory:a semigroup approach, Commun. Appl. Anal., 2001, 5:121-133.
[10] Giorgi C., Pata V., Marzocchi A., Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differ. Equ. Appl., 1998, 5:333-354.
[11] Gurtin M. E., Pipkin A., A general theory of heat conduction with finite wave speed, Arch. Rational Mech. Anal., 1968, 31:113-126.
[12] Jackle J., Heat conduction and relaxation in liquids of high viscosity, Phys. Rev. A., 1990, 162:377-404.
[13] Meixner J., On the linear theory of heat conduction, Arch. Rational Mech. Anal., 1970, 39:108-130.
[14] Nunziato J., On heat conduction in materials with memory, Quart. Appl. Math., 1971, 29:187-204.
[15] Robinson J. C., Infinite-Dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.
[16] Sun C., Cao D., Duan J., Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyna. Syst., 2007, 6:293-318.
[17] Wang X., Duan F., Ma Q., et.al., Strong global attractors for the classical reaction-diffusion equations with fading memory, Chinese Ann. Math. A, 2015, 35:423-434.
[18] Wang F., Wang P., Yao Z., Approximate controllability of fractioanal paritial differential equation, Adv. Differ. Equ., 2015, 367.
[19] Wang F., Yao Z., Approximate controllability of fractional neutral differential systems with bounded delay, Fixed Point Theory, 2016, 17:495-508.
[20] Temam R., Infinite Dimensional Dynamical System in Mechanics and Physics, 2nd edn, Springer, New York, 1997.
[21] Xie Y., Li Y., Zeng Y., Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Space., 2016, 2014:1-11.
[22] Xie Y., Li Q., Zhu K., Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal:RWA., 2016, 31:23-37.
[23] Xie Y., Li Q., Huang C., et al., Attractors for the semilinear reaction-diffusion equation with distribution derivtives, J. Math. Phys., 2013, 540:92702.
[24] Zhang J., Xie Y., Luo Q., et al., Asymptotic behavior for the semilinear reaction-diffusion equations with memory, Adv. Differ. Equ., 2019, 510(1).
[25] Yang L., Yang M., Long-time behavior of reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal. TMA., 2011, 74(12):3876-3883.
[26] Zhong C., Sun C., Niu M., On the existence of global attractor for a class of infinite dimensional nonlinear dissipative dynamical systems, Chin Ann. Math. B, 2005, 26(3):393-400.
[27] Zhong C., Yang M., Sun C., The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Diff. Eqs., 2006, 223:367-399.
[28] Zhu K., Xie Y., Zhou F., et al., Pullback attractors for non-autonomous recation-diffusion equations in Rn, J. Math. Phys., 2019, 60:0032702.
[29] Zhu K., Xie Y., Zhou F., Lp-pullback attractors for non-autonomous recation-diffusion equations with delays, Topol. Methods Nonlinear Anal., 2019, 54:9-27.

[1]朱凯旋, 谢永钦, 张江卫. 带有某种遗传特征的非经典反应扩散方程的渐近行为[J]. 数学学报, 2021, 64(5): 721-736.
[2]冯保伟, 李海燕. 带有热记忆的非均匀柔性结构的长时间动力行为[J]. 数学学报, 2020, 63(6): 587-600.
[3]王小焕, 吕广迎. 非局部时滞反应扩散方程行波解的稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 13-28.
[4]刘林芳, 尹福其. 随机反应扩散方程的Lp-随机吸引子[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 751-766.
[5]刘其林;李玉祥;高洪俊;. 非局部反应扩散方程组的爆破性质[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 869-882.
[6]刘亚成;辛洪学. Fujita型反应扩散方程组整体解的存在性、非存在性与渐近性质[J]. Acta Mathematica Sinica, English Series, 2000, 43(5): 847-854.
[7]时宝. 具有无穷时滞的Volterra反应扩散方程组正解与有界正解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2000, 43(3): 545-554.
[8]王 术,谢春红. 非局部反应扩散方程的临界爆破指[J]. Acta Mathematica Sinica, English Series, 1998, 41(2): 261-026.
[9]张凯军;王亮涛. 关于Fujita型反应扩散方程组的Cauchy问题[J]. Acta Mathematica Sinica, English Series, 1997, 40(5): -.
[10]刘贵忠. 球面反应扩散方程传播算子值域的刻画[J]. Acta Mathematica Sinica, English Series, 1995, 38(6): -.
[11]王明新. 一个反应扩散方程的门槛结果[J]. Acta Mathematica Sinica, English Series, 1994, 37(6): -.
[12]何猛省. 一类含时滞的反应扩散方程的周期解和概周期解[J]. Acta Mathematica Sinica, English Series, 1989, 32(1): 91-97.
[13];. 数学学报笫31卷(1988)总目录[J]. Acta Mathematica Sinica, English Series, 1988, 31(6): 855-864.
[14]辛周平. 反应扩散方程Fife引理的一点注记及其应用[J]. Acta Mathematica Sinica, English Series, 1988, 31(2): 221-227.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23877
相关话题/数学 空间 科研 遗传 传播