删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带有某种遗传特征的非经典反应扩散方程的渐近行为

本站小编 Free考研考试/2021-12-27

带有某种遗传特征的非经典反应扩散方程的渐近行为 朱凯旋1, 谢永钦2, 张江卫21. 洞庭湖生态经济区建设与发展湖南省协调创新中心 & 湖南文理学院数理学院 常德 415000;
2. 长沙理工大学数学与统计学院 长沙 410114 Asymptotic Behavior of the Nonclassical Reaction-diffusion Equations Containing some Hereditary Characteristic Kai Xuan ZHU1, Yong Qin XIE2, Jiang Wei ZHANG21. Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Ecological Economic Zone, College of Mathematics and Physics Science, Hunan University of Arts and Science, Changde 415000, P. R. China;
2. School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(523 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文证明带有时滞项gtut)的非经典反应扩散方程在依赖于时间的空间中拉回吸引子的存在性,其中外力项kx)∈H-1(Ω),非线性项f分别满足临界指数增长和任意q-1(q≥2)次多项式增长.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-02-13
MR (2010):O193
基金资助:湖南省自然科学基金(2018JJ2416)及湖南省教育厅科学研究基金(20C1263);湖南文理学院科技创新团队资助项目(数值计算与随机过程及其应用)
通讯作者:朱凯旋,E-mail:zhukx12@163.comE-mail: zhukx12@163.com
作者简介: 谢永钦,E-mail:xieyq@csust.edu.cn;张江卫,E-mail:zjwmath@163.com
引用本文:
朱凯旋, 谢永钦, 张江卫. 带有某种遗传特征的非经典反应扩散方程的渐近行为[J]. 数学学报, 2021, 64(5): 721-736. Kai Xuan ZHU, Yong Qin XIE, Jiang Wei ZHANG. Asymptotic Behavior of the Nonclassical Reaction-diffusion Equations Containing some Hereditary Characteristic. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 721-736.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/721


[1] Arrieta J., Carvalho A. N., Hale J. K., A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 1992, 17:841-866.
[2] Babin A. V., Vishik M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[3] Ball J., Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 2004, 10:31-52.
[4] Caraballo T., Márquez-Durán A. M., Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 2013, 10:267-281.
[5] Caraballo T., Márquez-Durán A. M., Rivero F., Well-posedness and asymptotic behavior of a nonclassical nonautonomous diffusion equation with delay, Internat J. Bifur. Chaos Appl. Sci. Engrg., 2015, 25:1540021, 11 pp.
[6] Caraballo T., Márquez-Durán A. M., Rivero F., Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22:1817-1833.
[7] Cholewa J. W., Dlotko T., Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.
[8] Chueshov I., Lasiecka I., Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differential Equations, 2007, 233:42-86.
[9] Conti M., Pata V., Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 2014, 19:1-10.
[10] Conti M., Pata V., Temam R., Attractors for process on time-dependent spaces:Applications to wave equations, J. Differential Equations, 2013, 255:1254-1277.
[11] García-Luengo J., Marín-Rubio P., Reaction-diffusion equations with non-autonomous force in H-1 and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl., 2014, 417:80-95.
[12] Hale J. K., Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988.
[13] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[14] Hu Z. Y., Wang Y. J., Pullback attractors for a nonautonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 2012, 53:072702, 17 pp.
[15] Khanmamedov A. Kh., Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 2006, 318:92-101.
[16] Kloeden P. E., Lorenz T., Pullback incremental attraction, Nonauton. Dyn. Syst., 2014, 1:53-60.
[17] Lions J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
[18] Meng F. J., Yang M. H., Zhong C. K., Attractors for wave equations with nonlinear damping on timedependent space, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21:205-225.
[19] Robinson J. C., Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.
[20] Simon J., Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 1987, 146:65-96.
[21] Sun C. Y., Cao D. M., Duan J. Q., Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 2006, 19:2645-2665.
[22] Sun C. Y., Yang M. H., Dynamics of the nonclassical diffusion equations, Asymptotic Anal., 2008, 59:51-81.
[23] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
[24] Xie Y. Q., Li Q. S., Zhu K. X., Attractors for nonclassical diffusion equations with arbitrary polynomial growth, Nonlinear Anal. Real World Appl., 2016, 31:23-37.
[25] Zelik S., Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 2004, 3:921-934.
[26] Zhong C. K., Yang M. H., Sun C. Y., The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 2006, 223:367-399.
[27] Zhou F., Sun C. Y., Li X., Dynamics for the damped wave equations on time-dependent domains, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23:1645-1674.
[28] Zhu K. X., Sun C. Y., Pullback attractors for nonclassical diffusion equations with delays, J. Math. Phys., 2015, 56:092703, 20 pp.
[29] Zhu K. X., Xie Y. Q., Zhou F., Pullback attractors for a damped semilinear wave equation with delays, Acta Math. Sin. Engl. Ser., 2018, 34:1131-1150.
[30] Zhu K. X., Xie Y. Q., Zhou F., Lp-pullback attractors for non-autonomous reaction-diffusion equations with delays, Topol. Methods Nonlinear Anal., 2019, 54:9-27.

[1]刘佳. 具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解[J]. 数学学报, 2021, 64(4): 587-600.
[2]万育基, 余志先, 孟艳玲. 状态依赖时滞非局部扩散方程的波前解[J]. 数学学报, 2019, 62(3): 479-496.
[3]赵才地, 李艳娇, 阳玲, 张明书. Ladyzhenskaya流体力学方程组的拉回吸引子与不变测度[J]. 数学学报, 2018, 61(5): 823-834.
[4]王小焕, 吕广迎. 非局部时滞反应扩散方程行波解的稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 13-28.
[5]刘军. 一类随机时滞微分方程随机θ方法的均方收敛率[J]. Acta Mathematica Sinica, English Series, 2014, 57(1): 163-170.
[6]裴永珍, 王慧娜, 李长国, 高淑京. 一类具有Logistic增长和Holling II类功能反应的免疫模型[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 301-312.
[7]王宏洲, Richard M. TIMONEY. 二阶时滞微分方程边值问题的上下解方法[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 489-494.
[8]冯海星Si Yang Chen. 一类非线性脉冲泛函微分方程解的渐近性[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1237-124.
[9]马亚军;孙继涛;. 一般时间尺度上时滞脉冲系统的双测度稳定性[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 755-760.
[10]易泰山;黄立宏;. Bernfeld-Haddock猜想的推广形式及其证明[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 261-270.
[11]刘易成;李志祥;. 新的不动点定理及应用[J]. Acta Mathematica Sinica, English Series, 2006, 49(5): 1067-107.
[12]蒋威;. 非线性退化时滞微分控制系统的函数能控性[J]. Acta Mathematica Sinica, English Series, 2006, 49(5): 1153-116.
[13]崔景安. 具有扩散和时滞的捕食系统的持续生存[J]. Acta Mathematica Sinica, English Series, 2005, 48(3): 479-488.
[14]胡永珍;斯力更. 具有无限时滞的中立型高维周期微分系统的周期解[J]. Acta Mathematica Sinica, English Series, 2005, 48(2): 235-244.
[15]陈武华;关治洪;卢小梅. 扰动的中立型时滞差分方程的一致渐近稳定性[J]. Acta Mathematica Sinica, English Series, 2005, 48(1): 63-74.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23816
相关话题/数学 系统 遗传 湖南 基金