摘要本文证明带有时滞项g(t,ut)的非经典反应扩散方程在依赖于时间的空间中拉回吸引子的存在性,其中外力项k(x)∈H-1(Ω),非线性项f分别满足临界指数增长和任意q-1(q≥2)次多项式增长. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-02-13 | | 基金资助:湖南省自然科学基金(2018JJ2416)及湖南省教育厅科学研究基金(20C1263);湖南文理学院科技创新团队资助项目(数值计算与随机过程及其应用)
| 通讯作者:朱凯旋,E-mail:zhukx12@163.comE-mail: zhukx12@163.com | 作者简介: 谢永钦,E-mail:xieyq@csust.edu.cn;张江卫,E-mail:zjwmath@163.com |
[1] Arrieta J., Carvalho A. N., Hale J. K., A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 1992, 17:841-866. [2] Babin A. V., Vishik M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. [3] Ball J., Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 2004, 10:31-52. [4] Caraballo T., Márquez-Durán A. M., Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 2013, 10:267-281. [5] Caraballo T., Márquez-Durán A. M., Rivero F., Well-posedness and asymptotic behavior of a nonclassical nonautonomous diffusion equation with delay, Internat J. Bifur. Chaos Appl. Sci. Engrg., 2015, 25:1540021, 11 pp. [6] Caraballo T., Márquez-Durán A. M., Rivero F., Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22:1817-1833. [7] Cholewa J. W., Dlotko T., Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000. [8] Chueshov I., Lasiecka I., Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differential Equations, 2007, 233:42-86. [9] Conti M., Pata V., Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 2014, 19:1-10. [10] Conti M., Pata V., Temam R., Attractors for process on time-dependent spaces:Applications to wave equations, J. Differential Equations, 2013, 255:1254-1277. [11] García-Luengo J., Marín-Rubio P., Reaction-diffusion equations with non-autonomous force in H-1 and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl., 2014, 417:80-95. [12] Hale J. K., Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988. [13] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. [14] Hu Z. Y., Wang Y. J., Pullback attractors for a nonautonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 2012, 53:072702, 17 pp. [15] Khanmamedov A. Kh., Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 2006, 318:92-101. [16] Kloeden P. E., Lorenz T., Pullback incremental attraction, Nonauton. Dyn. Syst., 2014, 1:53-60. [17] Lions J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. [18] Meng F. J., Yang M. H., Zhong C. K., Attractors for wave equations with nonlinear damping on timedependent space, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21:205-225. [19] Robinson J. C., Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. [20] Simon J., Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 1987, 146:65-96. [21] Sun C. Y., Cao D. M., Duan J. Q., Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 2006, 19:2645-2665. [22] Sun C. Y., Yang M. H., Dynamics of the nonclassical diffusion equations, Asymptotic Anal., 2008, 59:51-81. [23] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. [24] Xie Y. Q., Li Q. S., Zhu K. X., Attractors for nonclassical diffusion equations with arbitrary polynomial growth, Nonlinear Anal. Real World Appl., 2016, 31:23-37. [25] Zelik S., Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 2004, 3:921-934. [26] Zhong C. K., Yang M. H., Sun C. Y., The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 2006, 223:367-399. [27] Zhou F., Sun C. Y., Li X., Dynamics for the damped wave equations on time-dependent domains, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23:1645-1674. [28] Zhu K. X., Sun C. Y., Pullback attractors for nonclassical diffusion equations with delays, J. Math. Phys., 2015, 56:092703, 20 pp. [29] Zhu K. X., Xie Y. Q., Zhou F., Pullback attractors for a damped semilinear wave equation with delays, Acta Math. Sin. Engl. Ser., 2018, 34:1131-1150. [30] Zhu K. X., Xie Y. Q., Zhou F., Lp-pullback attractors for non-autonomous reaction-diffusion equations with delays, Topol. Methods Nonlinear Anal., 2019, 54:9-27.
|
[1] | 刘佳. 具有双稳非线性项的非局部时滞扩散方程的柱状对称波前解[J]. 数学学报, 2021, 64(4): 587-600. | [2] | 万育基, 余志先, 孟艳玲. 状态依赖时滞非局部扩散方程的波前解[J]. 数学学报, 2019, 62(3): 479-496. | [3] | 赵才地, 李艳娇, 阳玲, 张明书. Ladyzhenskaya流体力学方程组的拉回吸引子与不变测度[J]. 数学学报, 2018, 61(5): 823-834. | [4] | 王小焕, 吕广迎. 非局部时滞反应扩散方程行波解的稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 13-28. | [5] | 刘军. 一类随机时滞微分方程随机θ方法的均方收敛率[J]. Acta Mathematica Sinica, English Series, 2014, 57(1): 163-170. | [6] | 裴永珍, 王慧娜, 李长国, 高淑京. 一类具有Logistic增长和Holling II类功能反应的免疫模型[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 301-312. | [7] | 王宏洲, Richard M. TIMONEY. 二阶时滞微分方程边值问题的上下解方法[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 489-494. | [8] | 冯海星Si Yang Chen. 一类非线性脉冲泛函微分方程解的渐近性[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1237-124. | [9] | 马亚军;孙继涛;. 一般时间尺度上时滞脉冲系统的双测度稳定性[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 755-760. | [10] | 易泰山;黄立宏;. Bernfeld-Haddock猜想的推广形式及其证明[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 261-270. | [11] | 刘易成;李志祥;. 新的不动点定理及应用[J]. Acta Mathematica Sinica, English Series, 2006, 49(5): 1067-107. | [12] | 蒋威;. 非线性退化时滞微分控制系统的函数能控性[J]. Acta Mathematica Sinica, English Series, 2006, 49(5): 1153-116. | [13] | 崔景安. 具有扩散和时滞的捕食系统的持续生存[J]. Acta Mathematica Sinica, English Series, 2005, 48(3): 479-488. | [14] | 胡永珍;斯力更. 具有无限时滞的中立型高维周期微分系统的周期解[J]. Acta Mathematica Sinica, English Series, 2005, 48(2): 235-244. | [15] | 陈武华;关治洪;卢小梅. 扰动的中立型时滞差分方程的一致渐近稳定性[J]. Acta Mathematica Sinica, English Series, 2005, 48(1): 63-74. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23816
带有对数非线性项的回火分数p-Laplace系统的驻波解王国涛1,2,侯文文1,张丽红1,RaviP.AGARWAL3,21.山西师范大学数学与计算机科学学院临汾041004;2.NonlinearAnalysisandAppliedMathematics(NAAM)ResearchGroup,De ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非自治随机FitzHugh-Nagumo系统的随机一致指数吸引子韩宗飞,周盛凡浙江师范大学数学与计算机科学学院金华321004RandomUniformExponentialAttractorforNon-autonomousStochasticFitzHugh-NagumoSystemZongFe ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Zalcman引理在随机迭代函数族动力系统中的应用黄小杰1,2,刘芝秀11南昌工程学院理学院江西330099;2复旦大学计算机科学技术学院上海200433AnApplicationofZalcmanLemmainDynamicalSystemsofRandomIteratedFunctionFami ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于遗传算法的图的划分度量维数计算武建1,2,赵海霞3,杨卫华41.山西财经大学应用数学学院,太原030006;2.太原理工大学信息与计算机学院,太原030600;3.山西财经大学统计学院,太原030006;4.太原理工大学数学学院,太原030600ComputingthePartitionMetr ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|