删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双环图上的唯一性及其重构

本站小编 Free考研考试/2021-12-27

双环图上的唯一性及其重构 官声玉1, 杨传富1, Murat SAT21. 南京理工大学理学院 南京 210094;
2. Faculty of Art and Sciences, Department of Mathematics, Erzincan University, Erzincan, Turkey Uniqueness and Reconstruction of the Double Loop Graph Sheng Yu GUAN1, Chuan Fu YANG1, Murat SAT21. School of Science, Nanjing University of Science and Technology, Nanjing 210094, P. R. China;
2. Faculty of Art and Sciences, Department of Mathematics, Erzincan University, Erzincan, Turkey
摘要
图/表
参考文献
相关文章

全文: PDF(500 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究带双环图上的Sturm-Liouville微分算子反问题,该算子在内部顶点处满足标准匹配条件.在求得特征值渐进式的基础上,通过子谱构成的向量函数系的完备性及其Riesz基性质重构未知势函数,并且给出解的唯一性定理和重构算法.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-28
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11871031);江苏省自然科学基金资助项目(BK20201303)
作者简介: 官声玉,E-mail:guanshengyu@njust.edu.cn;杨传富,E-mail:chuanfuyang@njust.edu.cn;Murat SAT,E-mail:murat-sat24@hotmail.com
引用本文:
官声玉, 杨传富, Murat SAT. 双环图上的唯一性及其重构[J]. 数学学报, 2021, 64(6): 991-998. Sheng Yu GUAN, Chuan Fu YANG, Murat SAT. Uniqueness and Reconstruction of the Double Loop Graph. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 991-998.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/991


[1] Bondarenko N. P., A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Analysis and Mathematical Physics, 2018, 8(1):155-168.
[2] Bondarenko N. P., An inverse problem for an integro-differential operator on a star-shaped graph, Mathematical Methods in the Applied Sciences, 2018, 41(4):1697-1702.
[3] Bondarenko N. P., Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions, Journal of Inverse and Ill-posed Problems, 2018, 26(1):1-12.
[4] Bondarenko N. P., A 2-edge partial inverse problem for the Sturm-Liouville operators with singular potentials on a star-shaped graph, Tamkang Journal of Mathematics, 2018, 49(1):49-66.
[5] Bondarenko N. P., Yang C. F., Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with different edge lengths, Results in Mathematics, 2018, 73:No. 56, 17 pp.
[6] Freiling G., Yurko V. A., Inverse Sturm-Liouville Problems and their Applications, New York:Nova Science Publishers, 2001.
[7] He X. H., Volkmer H. Riesz bases of solutions of Sturm-Liouville equations, Journal of Fourier Analysis and Applications, 2001, 7(3):297-307.
[8] Hryniv R. O., Mykytyuk Y. V., Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 2003, 19(3):665-684.
[9] Kuchment P., Quantum graphs:I. Some basic structures, Waves in Random Media, 2004, 14(1):107-128.
[10] Kurasov P., Inverse scattering for lasso graph, Jounal of Mathemaical Physics, 2013, 54:042103.
[11] Pivovarchik V., Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM Journal on Mathematical Analysis, 2000, 32(4):801-819.
[12] Yang C. F., Inverse spectral problems for the Sturm-Liouville operator on a d-star graph, Journal of Mathematical Analysis and Applications, 2010, 365(2):742-749.
[13] Yang C. F., Bondarenko N. P., A partial inverse problem for the Sturm-Liouville operator on the lasso-graph, Inverse Problems and Imaging, 2018, 13(1):69-79.
[14] Yang C. F., Yang X. P., Uniqueness theorems from partial information of the potential on a graph, Journal of Inverse and Ill-posed Problems, 2011, 19(4-5):631-641.
[15] Yurko V. A., Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 2005, 21(3):1075.
[16] Yurko V. A., Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2008, 2(4):543-553.
[17] Yurko V. A., Inverse nodal problems for the Sturm-Liouville differential operators on a star-type graph, Siberian Mathematical Journal, 2009, 50(2):373-378.

[1]林丽琼, 张云南. Banach空间上p-fusion框架的若干等价描述[J]. 数学学报, 2021, 64(2): 301-310.
[2]李云章, 王雅慧. 半直线伸缩调制框架集[J]. 数学学报, 2020, 63(1): 45-60.
[3]周燕, 朱玉灿. Hilbert空间中的K-g-框架的性质[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 1031-1040.
[4]郭训香. g-框架的一些新性质[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 881-892.
[5]肖祥春, 曾晓明. 连续g-框架的刻画[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1131-1144.
[6]傅守忠;徐宗本;魏广生;. 不定型Sturm-Liouville逆问题[J]. Acta Mathematica Sinica, English Series, 2009, (01): 49-62.
[7]李春艳;曹怀信;. Banach空间中的X_d框架与Reisz基[J]. Acta Mathematica Sinica, English Series, 2006, 49(6): 1361-136.
[8]崔丽鸿;程正兴. 多小波子空间上的单小波表示[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 691-696.
[9]王耀庭;王光;李胜家. Euler-Bernoulli梁边界反馈控制系统的Riesz基生成问题[J]. Acta Mathematica Sinica, English Series, 2000, 43(6): 1089-109.
[10]李登峰;李登峰. 具有矩阵伸缩的双正交小波基[J]. Acta Mathematica Sinica, English Series, 2000, 43(5): 907-920.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23878
相关话题/空间 数学 南京理工大学 理学院 未知