删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非凸多分块优化部分对称正则化交替方向乘子法

本站小编 Free考研考试/2021-12-27

非凸多分块优化部分对称正则化交替方向乘子法 简金宝1, 刘鹏杰2, 江羡珍11. 广西民族大学数学与物理学院应用数学与人工智能研究中心 广西混杂计算与集成电路分析重点实验室 南宁 530006;
2. 广西大学数学与信息科学学院 南宁 530004 A Partially Symmetric Regularized Alternating Direction Method of Multipliers for Nonconvex Multi-block Optimization Jin Bao JIAN1, Peng Jie LIU2, Xian Zhen JIANG11. College of Mathematics and Physics, Center for Applied Mathematics and Artificial Intelligence, Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities, Nanning 530006, P. R. China;
2. College of Mathematics and Information Science, Guangxi University, Nanning 530004, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(766 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要交替方向乘子法求解两分块优化的研究已逐渐成熟和完善,但对于非凸多分块优化的研究相对较少.本文提出带线性约束的非凸多分块优化的部分对称正则化交替方向乘子法.首先,在适当的假设条件下,包括部分对称乘子修正中参数的估值区域,证明了算法的全局收敛性.其次,当增广拉格朗日函数满足Kurdyka-Lojasiewicz(KL)性质时,证明了算法的强收敛性.当KL性质关联函数具有特殊结构时,保证了算法的次线性和线性收敛率.最后,对算法进行了初步数值试验,结果表明算法的数值有效性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-10
MR (2010):O221
基金资助:国家自然科学基金(11771383);广西自然科学基金(2020GXNSFDA238017,2018GXNSFFA281007)
作者简介: 简金宝,E-mail:jianjb@gxu.edu.cn;刘鹏杰,E-mail:liupengjie2019@163.com;江羡珍,E-mail:yl2811280@163.com
引用本文:
简金宝, 刘鹏杰, 江羡珍. 非凸多分块优化部分对称正则化交替方向乘子法[J]. 数学学报, 2021, 64(6): 1005-1026. Jin Bao JIAN, Peng Jie LIU, Xian Zhen JIANG. A Partially Symmetric Regularized Alternating Direction Method of Multipliers for Nonconvex Multi-block Optimization. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 1005-1026.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/1005


[1] Attouch H., Bolte J., On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 2009, 116(1-2):5-16.
[2] Bai J., Liang J., Guo K., et al., Accelerated symmetric ADMM and its applications in signal processing, arXiv:1906.12015, 2019.
[3] Bolte J., Daniilidis A., Lewis A., The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., 2007, 17(4):1205-1223.
[4] Boyd S., Parikh N., Chu E, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 2011, 31:1-122.
[5] Candès E., Li X., Ma Y., et al., Robust principal component analysis? J. ACM, 2011, 58(3):1-37.
[6] Chao M., Cheng C., Zhang H., A linearized alternating direction method of multipliers with substitution procedure, Asia Pac. J. Oper. Res., 2015, 32(3):1550011.
[7] Chao M., Deng Z., Jian J., Convergence of linear Bregman ADMM for nonconvex and nonsmooth problems with nonseparable structure, Complexity, 2020, 6237942.
[8] Chao M., Zhang Y., Jian J., An inertial proximal alternating direction method of multipliers for nonconvex optimization, Int. J. Comput. Math., https://doi.org/10.1080/00207160.2020.1812585, 2020.
[9] Chen C., He B., Ye Y., et al., The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., 2016, 155(1-2):57-79.
[10] Chen C., Some notes on the divergence example for multi-block alternating direction method of multipliers (in Chinese), Oper. Res. Trans., 2019, 23(3):135-140.
[11] Daubechies I., Defrise M., De Mol C., An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 2003, 57(11):1413-1457.
[12] Douglas J., Rachford Jr.H.H., On the numerical solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 1956, 82(2):421-439.
[13] Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.
[14] Gu Y., Jiang B., Han D., A semi-proximal-based strictly contractive Peaceman-Rachford splitting method, arXiv:1506.02221, 2015.
[15] Guo K., Han D., Wang D., et al., Convergence of ADMM for multi-block nonconvex separable optimization models, Front. Math. China, 2017, 12(5):1139-1162.
[16] Guo K., Han D., Wu T., Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints, Int. J. Comput. Math., 2017, 94(8):1653-1669.
[17] Han D., Yuan X., A note on the alternating direction method of multipliers, J. Optim. Theory Appl., 2012, 155(1):227-238.
[18] Han D., Yuan X., Local linear convergence of the alternating direction method of multipliers for quadratic programs, SIAM J. Numer. Anal., 2013, 51(6):3446-3457.
[19] He B., Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities, Comput. Optim. Appl., 2009, 42(2):195-212.
[20] He B., Ma F., Yuan X., Convergence study on the symmetric version of ADMM with larger step sizes, SIAM J. Imaging Sci., 2016, 9(3):1467-1501.
[21] He B., Tao M., Yuan X., Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim., 2012, 22(2):313-340.
[22] He B., Tao M., Yuan X., A splitting method for separable convex programming, IMA J. Numer. Anal., 2015, 35(1):394-426.
[23] He B., Yuan X., Linearized alternating direction method with Gaussian back substitution for separable convex programming, Numer. Algebr. Control Optim., 2013, 3(2):247-260.
[24] Jian J., Zhang Y., Chao M., A regularized alternating direction method of multipliers for a class of nonconvex problems, J. Inequal. Appl., 2019, 2019(1):193.
[25] Li Z., Dai Y., Optimal beamformer design in the reverberant environment (in Chinese), Sci. Sin. Math., 2016, 46(06):877-892.
[26] Liu M., Jian J., An ADMM-based SQP method for separably smooth nonconvex optimization, J. Inequal. Appl., 2020, 2020:81.
[27] Lions P., Mercier B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 1979, 16(6):964-979
[28] Nesterov Y., Introductory Lectures on Convex Optimization:A Basic Course, Springer Science & Business Media, Boston, 2013.
[29] Peaceman D., Rachford H., The numerical solution of parabolic and elliptic differential equations, J. Soci. Ind. Appl. Math., 1955, 3(1):28-41.
[30] Rockafellar R., Wets R., Variational Analysis, Springer Science & Business Media, Berlin, 2009.
[31] Wang F., Cao W., Xu Z., Convergence of multi-block Bregman ADMM for nonconvex composite problems, Sci. China Inform. Sci., 2018, 61(12):122101.
[32] Wang F., Xu Z., Xu H., Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems, arXiv:1410.8625, 2014.
[33] Wang Y., Fan S., Weighted l1-norm constrained sparse regularization and alternating directions method of multipliers for seismic time-frequency analysis (in Chinese), Sci. Sin. Math., 2018, 48(03):457-470.
[34] Wu Z., Li M., Wang D., Han D., A symmetric alternating direction method of multipliers for separable nonconvex minimization problems, Asia Pac. J. Oper. Res., 2017, 34(06):1750030.
[35] Xu Z., Chang X., Xu F., et al., l1/2 regularization:a thresholding representation theory and a fast solver, IEEE T. Neur. Net. Lear., 2012, 23(7):1013-1027.
[36] Yang L., Luo J., Xu Y., et al., A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading, IEEE T. Ind. Inform., 2020, 16(3):1858-1872.
[37] Yang W., Han D., Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems, SIAM J. Numer. Anal., 2016, 54(2):625-640.
[38] Zeng J., Fang J., Xu Z., Sparse SAR imaging based on l1/2 regularization, Sci. China Inform. Sci., 2012, 55:1755-1775.
[39] Zhu M., Mihic K., Ye Y., On a randomized multi-block ADMM for solving selected machine learning problems, arXiv:1907.01995, 2019.

[1]刘军. 一类随机时滞微分方程随机θ方法的均方收敛率[J]. Acta Mathematica Sinica, English Series, 2014, 57(1): 163-170.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23880
相关话题/优化 广西 数学 物理学院 应用数学