摘要交替方向乘子法求解两分块优化的研究已逐渐成熟和完善,但对于非凸多分块优化的研究相对较少.本文提出带线性约束的非凸多分块优化的部分对称正则化交替方向乘子法.首先,在适当的假设条件下,包括部分对称乘子修正中参数的估值区域,证明了算法的全局收敛性.其次,当增广拉格朗日函数满足Kurdyka-Lojasiewicz(KL)性质时,证明了算法的强收敛性.当KL性质关联函数具有特殊结构时,保证了算法的次线性和线性收敛率.最后,对算法进行了初步数值试验,结果表明算法的数值有效性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-06-10 | | 基金资助:国家自然科学基金(11771383);广西自然科学基金(2020GXNSFDA238017,2018GXNSFFA281007)
| 作者简介: 简金宝,E-mail:jianjb@gxu.edu.cn;刘鹏杰,E-mail:liupengjie2019@163.com;江羡珍,E-mail:yl2811280@163.com |
[1] Attouch H., Bolte J., On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 2009, 116(1-2):5-16. [2] Bai J., Liang J., Guo K., et al., Accelerated symmetric ADMM and its applications in signal processing, arXiv:1906.12015, 2019. [3] Bolte J., Daniilidis A., Lewis A., The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., 2007, 17(4):1205-1223. [4] Boyd S., Parikh N., Chu E, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 2011, 31:1-122. [5] Candès E., Li X., Ma Y., et al., Robust principal component analysis? J. ACM, 2011, 58(3):1-37. [6] Chao M., Cheng C., Zhang H., A linearized alternating direction method of multipliers with substitution procedure, Asia Pac. J. Oper. Res., 2015, 32(3):1550011. [7] Chao M., Deng Z., Jian J., Convergence of linear Bregman ADMM for nonconvex and nonsmooth problems with nonseparable structure, Complexity, 2020, 6237942. [8] Chao M., Zhang Y., Jian J., An inertial proximal alternating direction method of multipliers for nonconvex optimization, Int. J. Comput. Math., https://doi.org/10.1080/00207160.2020.1812585, 2020. [9] Chen C., He B., Ye Y., et al., The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., 2016, 155(1-2):57-79. [10] Chen C., Some notes on the divergence example for multi-block alternating direction method of multipliers (in Chinese), Oper. Res. Trans., 2019, 23(3):135-140. [11] Daubechies I., Defrise M., De Mol C., An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 2003, 57(11):1413-1457. [12] Douglas J., Rachford Jr.H.H., On the numerical solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 1956, 82(2):421-439. [13] Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. [14] Gu Y., Jiang B., Han D., A semi-proximal-based strictly contractive Peaceman-Rachford splitting method, arXiv:1506.02221, 2015. [15] Guo K., Han D., Wang D., et al., Convergence of ADMM for multi-block nonconvex separable optimization models, Front. Math. China, 2017, 12(5):1139-1162. [16] Guo K., Han D., Wu T., Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints, Int. J. Comput. Math., 2017, 94(8):1653-1669. [17] Han D., Yuan X., A note on the alternating direction method of multipliers, J. Optim. Theory Appl., 2012, 155(1):227-238. [18] Han D., Yuan X., Local linear convergence of the alternating direction method of multipliers for quadratic programs, SIAM J. Numer. Anal., 2013, 51(6):3446-3457. [19] He B., Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities, Comput. Optim. Appl., 2009, 42(2):195-212. [20] He B., Ma F., Yuan X., Convergence study on the symmetric version of ADMM with larger step sizes, SIAM J. Imaging Sci., 2016, 9(3):1467-1501. [21] He B., Tao M., Yuan X., Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim., 2012, 22(2):313-340. [22] He B., Tao M., Yuan X., A splitting method for separable convex programming, IMA J. Numer. Anal., 2015, 35(1):394-426. [23] He B., Yuan X., Linearized alternating direction method with Gaussian back substitution for separable convex programming, Numer. Algebr. Control Optim., 2013, 3(2):247-260. [24] Jian J., Zhang Y., Chao M., A regularized alternating direction method of multipliers for a class of nonconvex problems, J. Inequal. Appl., 2019, 2019(1):193. [25] Li Z., Dai Y., Optimal beamformer design in the reverberant environment (in Chinese), Sci. Sin. Math., 2016, 46(06):877-892. [26] Liu M., Jian J., An ADMM-based SQP method for separably smooth nonconvex optimization, J. Inequal. Appl., 2020, 2020:81. [27] Lions P., Mercier B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 1979, 16(6):964-979 [28] Nesterov Y., Introductory Lectures on Convex Optimization:A Basic Course, Springer Science & Business Media, Boston, 2013. [29] Peaceman D., Rachford H., The numerical solution of parabolic and elliptic differential equations, J. Soci. Ind. Appl. Math., 1955, 3(1):28-41. [30] Rockafellar R., Wets R., Variational Analysis, Springer Science & Business Media, Berlin, 2009. [31] Wang F., Cao W., Xu Z., Convergence of multi-block Bregman ADMM for nonconvex composite problems, Sci. China Inform. Sci., 2018, 61(12):122101. [32] Wang F., Xu Z., Xu H., Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems, arXiv:1410.8625, 2014. [33] Wang Y., Fan S., Weighted l1-norm constrained sparse regularization and alternating directions method of multipliers for seismic time-frequency analysis (in Chinese), Sci. Sin. Math., 2018, 48(03):457-470. [34] Wu Z., Li M., Wang D., Han D., A symmetric alternating direction method of multipliers for separable nonconvex minimization problems, Asia Pac. J. Oper. Res., 2017, 34(06):1750030. [35] Xu Z., Chang X., Xu F., et al., l1/2 regularization:a thresholding representation theory and a fast solver, IEEE T. Neur. Net. Lear., 2012, 23(7):1013-1027. [36] Yang L., Luo J., Xu Y., et al., A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading, IEEE T. Ind. Inform., 2020, 16(3):1858-1872. [37] Yang W., Han D., Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems, SIAM J. Numer. Anal., 2016, 54(2):625-640. [38] Zeng J., Fang J., Xu Z., Sparse SAR imaging based on l1/2 regularization, Sci. China Inform. Sci., 2012, 55:1755-1775. [39] Zhu M., Mihic K., Ye Y., On a randomized multi-block ADMM for solving selected machine learning problems, arXiv:1907.01995, 2019.
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23880
一种非单调滤子信赖域算法解线性不等式约束优化王珏钰1,顾超1,朱德通21上海立信会计金融学院统计与数学学院上海201209;2上海师范大学数学系上海200234ANonmonotoneFilter-trust-regionAlgorithmforLinearInequalityConstrained ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27关于多目标优化问题真有效解的一点注记唐莉萍重庆工商大学数学与统计学院,重庆400067ANoteonGeoffrionProperlyEfficientSolutionsofMultiobjectiveOptimizationProblemsTANGLipingCollegeofMathematic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27集值优化问题的E-强有效解周志昂,刘爽重庆理工大学理学院,重庆400054E-StrongEfficiencyofSet-ValuedOptimizationProblemsZHOUZhiang,LiuShuangCollegeofSciences,ChongqingUniversityofTech ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非凸集值优化问题E-Benson真有效元的最优性条件吴唯钿1,仇秋生1,田伟福21.浙江师范大学数学系,金华321004;2.浙江师范大学计划财务处,金华321004TheOptimalityConditionsofE-BensonProperEfficientElementforNonconvex ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非光滑半无限多目标优化问题的Lagrange鞍点准则杨玉红1,21.内蒙古大学数学科学学院,呼和浩特010021;2.长江师范学院数学与统计学院,重庆408100LagrangeSaddlePointCriteriaforNonsmoothSemi-infiniteMultiobjectiveOpt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27新的梯度算法求解单位球笛卡尔积约束优化问题李明强1,2,韩丛英2,3,郭田德2,31.中国电子科技集团公司信息科学研究院,北京100086;2.中国科学院大学数学科学学院,北京100049;3.中国科学院大数据挖掘与知识管理重点实验室,北京100190NewGradientAlgorithmsfor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27集值优化问题的非线性增广拉格朗日方法向丽苏州大学数学科学学院,苏州215006TheNonlinearAugmentedLagrangianMethodofSet-valuedOptimizationXIANGLiDepartmentofMathematics,SoochowUniversity,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用徐义红,彭振华南昌大学数学系,南昌330031ANewKindofSecond-OrderSubgradientandApplicationstotheCharacterizationsforWeakMinimizerofSet-ValuedOpt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27关于《集值优化问题Henig真有效解的最优性条件》一文的注记徐义红,张霞南昌大学数学系,南昌330031ARemarkon《TheOptimizaitionConditionofHenigProperEfficientSolutionforSet-valuedOptimizationProblem》 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|