删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有弱迷向数量曲率的Randers度量

本站小编 Free考研考试/2021-12-27

具有弱迷向数量曲率的Randers度量 程新跃1, 龚妍廿21. 重庆师范大学数学科学学院 重庆 401331;
2. 重庆理工大学理学院 重庆 400054 The Randers Metrics of Weakly Isotropic Scalar Curvature Xin Yue CHENG1, Yan Nian GONG21. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P. R. China;
2. chool of Sciences, Chongqing University of Technology, Chongqing 400054, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(451 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了具有弱迷向数量曲率的Randers度量.证明了具有弱迷向数量曲率的Randers度量必定具有迷向S-曲率.进一步,证明了一个共形平坦且具有弱迷向数量曲率的非黎曼Randers度量一定是Minkowski度量.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-07-26
MR (2010):O186.14
基金资助:国家自然科学基金资助项目(11871126);重庆师范大学科学基金资助项目(17XLB022)
作者简介: 程新跃,E-mail:chengxy@cqnu.edu.cn;龚妍廿,E-mail:gyn@2017.cqut.edu.cn
引用本文:
程新跃, 龚妍廿. 具有弱迷向数量曲率的Randers度量[J]. 数学学报, 2021, 64(6): 1027-1036. Xin Yue CHENG, Yan Nian GONG. The Randers Metrics of Weakly Isotropic Scalar Curvature. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 1027-1036.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/1027


[1] Akbar-Zadeh H., Sur les espaces de Finsler á courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci., 1988, 74:281-322.
[2] Bácsó S., Cheng X. Y., Finsler conformal transformations and the curvature invariances, Publicationes Mathematicae-Debrecen, 2007, 70(1-2):221-231.
[3] Chen B., Xia K. W., On conformally flat (α, β)-metric with weaklly isotropic scalar curvature, J. Korean Math. Soc., 2019, 56(2):329-352.
[4] Chen G. Z., Cheng X. Y., An important class of conformally flat weak Einstein Finsler metrics, International Journal of Mathematics, 2013, 24(1):1350003(15 pages).
[5] Chen G. Z., He Q., Shen Z. M., On conformally flat (α, β)-metric with constant flag curvature, Publicationes Mathematicae-Debrecen, 2015, 86(3-4):387-400.
[6] Cheng X. Y., Shen Z. M., Finsler Geometry-An Approach via Randers Spaces, Heidelberg and Beijing:Springer and Science Press, 2012.
[7] Cheng X. Y., Shen Z. M., Randers metrics of scalar flag curvature, Journal of the Australian Mathematical Society, 2009, 87(3):359-370.
[8] Cheng X. Y., Yuan M. G., On Randers metrics of isotropic scalar curvature, Publicationes MathematicaeDebrecen, 2014, 84(1-2):63-74.
[9] Chern S. S., Shen Z., Riemann-Finsler Geometry, Singapore:World Scientific, 2005.
[10] Knebelman M. S., Conformal geometry of generalised metric spaces, Proc. Natl. Acad. Sci. USA, 1929, 15:376-379.
[11] Rund H., The Differiential Geometry of Finsler Spaces, Berlin:Springer-Verlag, 1959.
[12] Shen Z. M., Volume comparison and its applications in Riemann-Finsler geometry, Advances in Mathematics, 1997, 128:306-328.

[1]何勇, 张晓玲. 双扭曲积Hermitian流形[J]. 数学学报, 2018, 61(5): 835-842.
[2]杨国俊. 具迷向S-曲率的Randers度量[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1147-1156.
[3]胡泽军. 负曲率流形上给定数量曲率的共形形变[J]. Acta Mathematica Sinica, English Series, 1999, 42(2): -.
[4]吴报强,宋洪藻. 单位球面的三维紧致极小子流形[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 185-190.
[5]吴报强;宋洪藻. 单位球面的三维紧致极小子流形[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -.
[6]张伟平. 关于复超曲面上具正数量曲率之Riemann度量的存在性[J]. Acta Mathematica Sinica, English Series, 1996, 39(4): -.
[7]沈一兵. 关于复射影空间的实极小超曲面[J]. Acta Mathematica Sinica, English Series, 1985, 28(1): 85-90.
[8]欧阳崇珍. 关于利齐循环空间和利齐对称空间的几个定理[J]. Acta Mathematica Sinica, English Series, 1978, 21(3): 282-284.
[9]梁友栋. 几种类型的K~*空间的特征[J]. Acta Mathematica Sinica, English Series, 1959, 9(1): 69-75.
[10]黄城超. 常曲率空间与全脐点超曲面[J]. Acta Mathematica Sinica, English Series, 1958, 8(4): 490-495.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23881
相关话题/空间 数学 重庆 重庆师范大学 曲率