摘要我们研究了莫朗集E上的加倍概率测度μ的量子误差的渐近性质.对μ的任一r阶n-最优集αn及αn对应的任一Voronoi分划{Pa(αn)}a∈αn,定义Ia(αn,μ)=∫Pa(αn)d(x,a)rdμ(x);J(αn,μ):=mina∈αnIa(αn,μ),J(αn,μ):=maxa∈αnIa(αn,μ).记en,r(μ)为测度μ的r阶n-级量子误差.在一定意义的开集条件下,我们对加倍测度μ证明了Gersho猜测的下述弱形式:J(αn,μ),J(αn,μ)?1/nen,rr(μ). |
[1] Cawley R., Mauldin R. D., Multifractal decompositions of Moran fractals, Adv. Math., 1992, 92:196-236. [2] Dai M. F., Tan X., Quantization dimension of random self-similar measures, J. Math. Anal. Appl., 2010, 362:471-475. [3] Falconer K. J., Fractal Geometry:Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 2004. [4] Fort J. C., Pagès G., Asymptotic of optimal quantizers for some scalar distributions, J. Comp. Appl. Mathematics, 2002, 146:253-275. [5] Gersho A., Asymptotically optimal block quantization, IEEE Trans. Inform. Theory, 1979, 25:373-380. [6] Graf S., On Bandt's tangential distribution for self-similar measures, Monatsh. Math., 1995, 120:223-246. [7] Graf S., Luschgy H., Foundations of Quantization for Probability Distributions, Lecture Notes in Math., Vol. 1730, Springer, 2000. [8] Graf S., Luschgy H., The point density measure in the quantization of self-similar probabilities, Math. Proc. Camb. Phil. Soc., 2003, 138:513-531. [9] Graf S., Luschgy H., Quantization for probability measures with respect to the geometric mean error, Math. Proc. Camb. Phil. Soc., 2004, 136:687-717. [10] Graf S., Luschgy H., Pagès G., The local quantization behavior of absolutely continuous probabilities, Ann. Probab., 2012, 40:1795-1828. [11] Gray R., Neuhoff D., Quantization, IEEE Trans. Inform. Theory, 1998, 44:2325-2383. [12] Hua S., Rao H., Wen Z. Y., et al., On the structures and dimensions of Moran sets, Science in China, Ser. A, 2000, 43:836-852. [13] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30:713-747. [14] Käenmäki A., Rajala T., Suomala V., Existence of doubling measures via generalised nested cubes, Proc. Amer. Math. Soc., 2012, 140:3275-3281. [15] Kesseböhmer M., Zhu S., Some recent developments in quantization of fractal measures, In:Fractal Geometry and Stochastics V, Birkhäuser, Cham, 2015, 120:105-120. [16] Kesseböhmer M., Zhu S., On the quantization for self-affine measures on Bedford-McMullen carpets, Math. Z., 2016, 283:39-58. [17] Kreitmeier W., Optimal quantization for dyadic homogeneous Cantor distributions, Math. Nachr., 2008, 281:1307-1327. [18] Kreitmeier W., Asymptotic optimality of scalar Gersho quantizers, Constructive Approximation, 2013, 38:365-396. [19] Li J. J., Wu M., Pointwise dimensions of general Moran measures with open set condition, Sci. China Math., 2011, 54:699-710. [20] Liu Q. H., Wen Z. Y., On dimensions of multitype Moran sets, Math. Proc. Camb. Phil. Soc., 2005, 139:541-553. [21] Moran P. A. P., Additive functions of intervals and Hausdorff measure, Math. Proc. Camb. Philos. Soc., 1946, 42:15-23. [22] Olsen L., A multifractal formalism, Adv. Math., 1995, 116:82-196. [23] Pötzelberger K., The quantization dimension of distributions, Math. Proc. Camb. Phil. Soc., 2001, 131:507-519. [24] Vol'berg A. L., Konyagin S. V., On measures with the doubling condition, Math. USSR Izvestiya, 1988, 30:629-638. [25] Wei C., Wen S. Y., Wen Z. X., Doubling measures on uniform Cantor sets, J. Math. Anal. Appl., 2015, 430:500-516. [26] Wen Z. Y., Moran sets and Moran classes, Chinese Science Bulletin, 2001, 46:1849-1856. [27] Wu J. M., Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc., 1998, 126:1453-1459. [28] Yung P. L., Doubling properties of self-similar measures, Indiana Univ. Math. J., 2007, 56:965-990. [29] Zhu S. G., Asymptotic uniformity of the quantization error of self-similar measures, Math. Z., 2011, 267:915-929. [30] Zhu S. G., Asymptotic order of the quantization errors for a class of self-affine measures, Proc. Amer. Math. Soc., 2018, 146:537-651. [31] Zhu S. G., On the asymptotic uniformity of the quantization error for Moran measures on R1, Acta. Math. Sinica, English Series, 2019, 35:1520-1540. [32] Zhu S. G., Asymptotic uniformity of the quantization error for the Ahlfors-David probability measures, Science China Math., 2020, 63:1039-1056.
|
[1] | 吕凡, 熊瑛, 奚李峰. 分形集的拟一致不连通性[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 521-528. | [2] | 汪沁. 莫朗集的拟Lipschitz等价[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 187-196. | [3] | 武志容, 叶远灵. 弱分离条件下的自共形迭代函数系统[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 881-892. | [4] | 张云秀, 顾惠. 若干个齐次对称康托集的交[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 1043-1048. | [5] | 许绍元, 周作领, 苏维宜. 自相似集的质量分布原理与Hausdorff测度及其应用[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 117-124. | [6] | 龙伦海. 由表示系统生成的分形的维数[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 627-632. | [7] | 文胜友;许绍元. 关于自相似集的Hausdorff测度[J]. Acta Mathematica Sinica, English Series, 2001, 44(1): 117-124. | [8] | ;. 关于“关于自相似集的一个维数定理”一文的意见[J]. Acta Mathematica Sinica, English Series, 1997, 40(3): -. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23824
带有对数非线性项的回火分数p-Laplace系统的驻波解王国涛1,2,侯文文1,张丽红1,RaviP.AGARWAL3,21.山西师范大学数学与计算机科学学院临汾041004;2.NonlinearAnalysisandAppliedMathematics(NAAM)ResearchGroup,De ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非自治随机FitzHugh-Nagumo系统的随机一致指数吸引子韩宗飞,周盛凡浙江师范大学数学与计算机科学学院金华321004RandomUniformExponentialAttractorforNon-autonomousStochasticFitzHugh-NagumoSystemZongFe ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Zalcman引理在随机迭代函数族动力系统中的应用黄小杰1,2,刘芝秀11南昌工程学院理学院江西330099;2复旦大学计算机科学技术学院上海200433AnApplicationofZalcmanLemmainDynamicalSystemsofRandomIteratedFunctionFami ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|