删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

莫朗集上加倍测度量子误差的渐近均匀性

本站小编 Free考研考试/2021-12-27

莫朗集上加倍测度量子误差的渐近均匀性 朱三国江苏理工学院数理学院 常州 213001 The Asymptotic Uniformity of the Quantization Error for Doubling Measures on Moran Sets San Guo ZHUSchool of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(578 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要我们研究了莫朗集E上的加倍概率测度μ的量子误差的渐近性质.对μ的任一rn-最优集αnαn对应的任一Voronoi分划{Paαn)}aαn,定义Iaαnμ)=Paαndxarx);Jαnμ):=minaαnIaαnμ),Jαnμ):=maxaαnIaαnμ).记en,rμ)为测度μrn-级量子误差.在一定意义的开集条件下,我们对加倍测度μ证明了Gersho猜测的下述弱形式:Jαnμ),Jαnμ)?1/nen,rrμ).
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-19
MR (2010):O174.1
基金资助:国家自然科学基金资助项目(11571144)
作者简介: 朱三国,E-mail:sgzhu@jsut.edu.cn
引用本文:
朱三国. 莫朗集上加倍测度量子误差的渐近均匀性[J]. 数学学报, 2021, 64(5): 821-838. San Guo ZHU. The Asymptotic Uniformity of the Quantization Error for Doubling Measures on Moran Sets. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 821-838.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/821


[1] Cawley R., Mauldin R. D., Multifractal decompositions of Moran fractals, Adv. Math., 1992, 92:196-236.
[2] Dai M. F., Tan X., Quantization dimension of random self-similar measures, J. Math. Anal. Appl., 2010, 362:471-475.
[3] Falconer K. J., Fractal Geometry:Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 2004.
[4] Fort J. C., Pagès G., Asymptotic of optimal quantizers for some scalar distributions, J. Comp. Appl. Mathematics, 2002, 146:253-275.
[5] Gersho A., Asymptotically optimal block quantization, IEEE Trans. Inform. Theory, 1979, 25:373-380.
[6] Graf S., On Bandt's tangential distribution for self-similar measures, Monatsh. Math., 1995, 120:223-246.
[7] Graf S., Luschgy H., Foundations of Quantization for Probability Distributions, Lecture Notes in Math., Vol. 1730, Springer, 2000.
[8] Graf S., Luschgy H., The point density measure in the quantization of self-similar probabilities, Math. Proc. Camb. Phil. Soc., 2003, 138:513-531.
[9] Graf S., Luschgy H., Quantization for probability measures with respect to the geometric mean error, Math. Proc. Camb. Phil. Soc., 2004, 136:687-717.
[10] Graf S., Luschgy H., Pagès G., The local quantization behavior of absolutely continuous probabilities, Ann. Probab., 2012, 40:1795-1828.
[11] Gray R., Neuhoff D., Quantization, IEEE Trans. Inform. Theory, 1998, 44:2325-2383.
[12] Hua S., Rao H., Wen Z. Y., et al., On the structures and dimensions of Moran sets, Science in China, Ser. A, 2000, 43:836-852.
[13] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30:713-747.
[14] Käenmäki A., Rajala T., Suomala V., Existence of doubling measures via generalised nested cubes, Proc. Amer. Math. Soc., 2012, 140:3275-3281.
[15] Kesseböhmer M., Zhu S., Some recent developments in quantization of fractal measures, In:Fractal Geometry and Stochastics V, Birkhäuser, Cham, 2015, 120:105-120.
[16] Kesseböhmer M., Zhu S., On the quantization for self-affine measures on Bedford-McMullen carpets, Math. Z., 2016, 283:39-58.
[17] Kreitmeier W., Optimal quantization for dyadic homogeneous Cantor distributions, Math. Nachr., 2008, 281:1307-1327.
[18] Kreitmeier W., Asymptotic optimality of scalar Gersho quantizers, Constructive Approximation, 2013, 38:365-396.
[19] Li J. J., Wu M., Pointwise dimensions of general Moran measures with open set condition, Sci. China Math., 2011, 54:699-710.
[20] Liu Q. H., Wen Z. Y., On dimensions of multitype Moran sets, Math. Proc. Camb. Phil. Soc., 2005, 139:541-553.
[21] Moran P. A. P., Additive functions of intervals and Hausdorff measure, Math. Proc. Camb. Philos. Soc., 1946, 42:15-23.
[22] Olsen L., A multifractal formalism, Adv. Math., 1995, 116:82-196.
[23] Pötzelberger K., The quantization dimension of distributions, Math. Proc. Camb. Phil. Soc., 2001, 131:507-519.
[24] Vol'berg A. L., Konyagin S. V., On measures with the doubling condition, Math. USSR Izvestiya, 1988, 30:629-638.
[25] Wei C., Wen S. Y., Wen Z. X., Doubling measures on uniform Cantor sets, J. Math. Anal. Appl., 2015, 430:500-516.
[26] Wen Z. Y., Moran sets and Moran classes, Chinese Science Bulletin, 2001, 46:1849-1856.
[27] Wu J. M., Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc., 1998, 126:1453-1459.
[28] Yung P. L., Doubling properties of self-similar measures, Indiana Univ. Math. J., 2007, 56:965-990.
[29] Zhu S. G., Asymptotic uniformity of the quantization error of self-similar measures, Math. Z., 2011, 267:915-929.
[30] Zhu S. G., Asymptotic order of the quantization errors for a class of self-affine measures, Proc. Amer. Math. Soc., 2018, 146:537-651.
[31] Zhu S. G., On the asymptotic uniformity of the quantization error for Moran measures on R1, Acta. Math. Sinica, English Series, 2019, 35:1520-1540.
[32] Zhu S. G., Asymptotic uniformity of the quantization error for the Ahlfors-David probability measures, Science China Math., 2020, 63:1039-1056.

[1]吕凡, 熊瑛, 奚李峰. 分形集的拟一致不连通性[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 521-528.
[2]汪沁. 莫朗集的拟Lipschitz等价[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 187-196.
[3]武志容, 叶远灵. 弱分离条件下的自共形迭代函数系统[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 881-892.
[4]张云秀, 顾惠. 若干个齐次对称康托集的交[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 1043-1048.
[5]许绍元, 周作领, 苏维宜. 自相似集的质量分布原理与Hausdorff测度及其应用[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 117-124.
[6]龙伦海. 由表示系统生成的分形的维数[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 627-632.
[7]文胜友;许绍元. 关于自相似集的Hausdorff测度[J]. Acta Mathematica Sinica, English Series, 2001, 44(1): 117-124.
[8];. 关于“关于自相似集的一个维数定理”一文的意见[J]. Acta Mathematica Sinica, English Series, 1997, 40(3): -.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23824
相关话题/系统 质量 数理 江苏理工学院 数学