摘要图在平面内具有最小交叉次数的嵌入称为该图的一个最优平面画法.图G的交叉数cr(G)是该图的最优平面画法中的交叉次数.如果一个图可以嵌入在平面内使得每条边最多被交叉k次,则称其为k-可平面图.Zhang等人(2012)证明了顶点数为n的1-可平面图的交叉数最多为n-2,并且该上界是最优的.Czap,Harant与Hudák(2014)证明了顶点数为n的2-可平面图的交叉数最多为5(n-2).本文给出了2-可平面图的交叉数的一个更好的上界,并利用它从组合学的角度证明了Kn是2-可平面图当且仅当n ≤ 7(该问题于2019年之前是个公开问题,最近由Angelini等人使用计算机程序证明). | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-01-20 | | 基金资助:国家自然科学基金资助项目(11871055);西安市科协青年人才托举计划资助项目(2018-6);国家留学基金委公派留学(访问****)项目(201906965003)
| 作者简介: 张欣,E-mail:xzhang@xidian.edu.cn |
[1] Angelini P., Bekos M. A., Kaufmann M., et al., Efficient generation of different topological representations of graphs beyond-planarity, In:C. D. Tóth and D. Archambault eds., Proc. of 27th International Symposium on Graph Drawing (GD 2019), 2019. [2] Auer C., Brandenburg F., Gleiβner A., et al., On sparse maximal 2-planar graphs, In:Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS 7704, 2013:555-556. [3] Bekos M., Di Giacomo E., Didimo W., et al., Edge partitions of optimal 2-plane and 3-plane graphs, Discrete Mathematics, 2019, 342(4):1038-1047. [4] Cabello S., Mohar B., Adding one edge to planar graphs makes crossing number and 1-planarity hard, SIAM Journal on Computing, 2013, 42(5):1803-1829. [5] Chimani M., Kindermann P., Montecchiani F., et al., Crossing numbers of beyond-planar graphs, In:Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS 11904, 2019:78-86. [6] Czap J., Harant J., Hudák D., An upper bound on the sum of powers of the degrees of simple 1-planar graphs, Discrete Applied Mathematics, 2014, 165:146-151. [7] Didimo W., Liotta G., Montecchiani F., A survey on graph drawing beyond planarity, ACM Computing Surveys, 2019, 52(1):Art. No4, 37pp. [8] Diestel R., Graph Theory (5th Edition), Springer, Berlin, 2017. [9] Garey M. R., Johnson D. S., Crossing number is NP-complete, SIAM Journal on Algebraic Discrete Methods, 1983, 4(3):312-316. [10] Guy R. K., A combinatorial problem, Nabla (Bulletin of the Malayan Mathematical Society), 1960, 7:68-72. [11] Guy R. K., Crossing numbers of graphs, In:Graph Theory and Applications (Y. Alavi, D. R. Lick, and A. T. White, Eds.), Springer, Berlin, Heidelberg, 1972:111-124. [12] Hliněný P., Crossing number is hard for cubic graphs, Journal of Combinatorial Theory, Series B, 2006, 96(4):455-471. [13] Hoffmann M., Tóth C., Two-planar graphs are quasiplanar, In:42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), Francois Raskin, 2017, Art. No47:1-14. [14] Kobourov S., Liotta G., Montecchiani F., An annotated bibliography on 1-planarity, Computer Science Review, 2017, 25:49-67. [15] Leighton T., Complexity Issues in VLSI, Foundations of Computing Series, MIT Press, Cambridge, 1983. [16] Lu Z., Song N., Light edges in 3-connected 2-planar graphs with prescribed minimum degree, Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41(3):1265-1274. [17] Pach J., Tóth G., Graphs drawn with few crossings per edge, Combinatorica, 1997, 17(3):427-439. [18] Pan S., Richter R., The crossing number of K11 is 100, Journal of Graph Theory, 2007, 56(2):128-134. [19] Saaty T. L., The minimum number of intersections in complete graphs, Proceedings of the National Academy of Sciences, 1964, 3:688-690. [20] Schaefer M., The graph crossing number and its variants:A survey, Electronic Journal of Combinatorics, 2018, 1. [21] Székely L., Crossing numbers and hard Erdös problems in discrete geometry. Combinatorics Probability and Computing, 1997, 6(3):353-358. [22] Turán P., A note of welcome. Journal of Graph Theory, 1977, 1(1):7-9. [23] Xu J., Graph Theory and Its Application (in Chinese), Press of University of Science and Technology of China, Hefei, 2019. [24] Zhang X., Liu G., Wu J. L., (1, λ)-embedded graphs and the acyclic edge choosability. Bulletin of the Korean Mathematical Society, 2012, 49(3):573-580. [25] Zhang X., Liu G., Wu J. L., Structural properties of 1-planar graphs and an application to acyclic edge coloring (in Chinese). Sci. Sin. Math., 2010, 40(10):1025-1032. [26] Zhang X., Liu W., The coloring of the class of 1-planar graphs and its subclasses (in Chinese), Operations Research Transactions, 2017, 21(4):135-152.
|
[1] | 欧阳章东, 黄元秋. Km□Pn的交叉数[J]. 数学学报, 2016, 59(3): 405-410. | [2] | 尹建华. r-可图序列与r-完全子图[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 369-380. | [3] | 李赵祥, 任韩. 不可定向曲面上的最大亏格嵌入和最小亏格嵌入[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 329-332. | [4] | 徐俊明. 临界 h 棱连通图的最大棱数及其极值图[J]. Acta Mathematica Sinica, English Series, 1990, 33(6): 804-813. | [5] | 刘振宏. 关于Win猜想的部分结果[J]. Acta Mathematica Sinica, English Series, 1987, 30(5): 675-678. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23763
一类基于量子程序理论的序列效应代数李午栋1,张颖2,贺衎31太原理工大学数学学院太原030024;2太原理工大学信息与计算机学院太原030024;3太原理工大学数学学院&信息与计算机学院&软件学院太原030024ASub-sequentialEffectAlgebrafromtheQuantumPr ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类新的广义割圆序列的线性复杂度及其自相关值刘华宁,陈晓林西北大学数学学院西安710127AutocorrelationValuesandLinearComplexityofNewGeneralizedCyclotomicSquencesHuaNingLIU,XiaoLinCHENSchoolofM ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27随机变量序列加权和的一般Davis-Gut律李炜1,陈平炎21仲恺农业工程学院计算科学学院,广州510225;2暨南大学数学系,广州510630GeneralizedDavis-GutLawforWeightedSumsofRandomVariablesLIWei1,ChenPingyan21Col ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27条件PA序列的条件H-R型不等式及其应用冯德成,李琴社,王英西北师范大学数学与统计学院,兰州730070TheConditionalHjek-Rnyi-typeInequalitiesforConditionalPASequencesandtheirApplicationFENGDecheng,LI ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27混合约束Minimax问题的基于序列线性方程组的模松弛SQP算法王福胜1,高娟2,赵媛璐3,姜合峰31.太原师范学院数学系,晋中030619;2.河北工业大学控制科学与工程学院,天津300401;3.太原师范学院数学系,晋中030619ANorm-relaxedSQPAlgorithmwithaSy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27I.I.D.序列最大部分和的精确渐近性朱震,赵月旭杭州电子科技大学经济学院,杭州310018PreciseAsymptoticsforMaximalPartialSumsofI.I.D.SequencesZHUZhen,ZHAOYuexuCollegeofEconomics,HangzhouDian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27自回归序列的穿带率王昕,程希明北京信息科技大学理学院,北京100192TheBand-crossingRateofPth-oraerAutoregressiveProcessesWANGXin,CHENGXimingSchoolofScience,BeijingInformationSciencea ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27END随机变量序列加权和的矩完全收敛性邱德华1,陈平炎2,肖娟31.广东财经大学数学与统计学院,广州510320;2.暨南大学数学系,广州510630;3.衡阳师范学院数学与统计学院,衡阳421002CompleteMomentConvergenceforSequencesofENDRandomVa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27-混合序列矩收敛的渐近性质付宗魁,吴群英桂林理工大学理学院,桂林541004AsymptoticPropertiesoftheMomentConvergencefor-mixingSequenceFUZongkui,WUQunyingCollegeofScience,Guilin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|