摘要本文在Sobolev—Lorentz空间W 2L2,q(R4)的范数约束下得到了一个最佳的二阶次临界型Adams不等式.进一步,当次临界指标逼近最佳常数时,得到了Adams泛函的上、下界的估计.本文主要采用了Lam和Lu[A new approach to sharp Moser—Trudinger and Adams type inequalities:a rearrangement-free argument,J. Diff. Equ.,2013,255(3):298—325]的分割水平集方法. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-04-01 | | 基金资助:国家自然科学基金资助项目(11601190,11701162,11661006);江苏省青年基金资助项目(BK20160483);江苏大学基础基金资助项目(16JDG043)
|
[1] Adachi S., Tanaka K., Trudinger type inequalities in RN and their best exponents, Proc. Amer. Math. Soc., 1999, 128:2051-2057. [2] Adams D. R., A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 1988, 128:385-398. [3] Alberico A., Moser type inequalities for higher-order derivatives in Lorentz spaces, Potential Anal., 2008, 28:389-400. [4] Alvino A., Ferone V., Trombetti G., Moser-type inequalities in Lorentz spaces, Potential Anal., 1996, 5:273-299. [5] Cassani D., Tarsi C., A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in RN, Asymptot. Anal., 2009, 64(1-2):29-51. [6] Chen L., Lu G., Zhang C., Sharp weighted Trudinger-Moser-Adams inequalities on the whole space and the existence of their extremals, Calc. Var. Partial Differential Equations, 2019, 58(4):132, 31 pp. [7] Chen L., Lu G., Zhu M., Existence and nonexistence of extremals for critical Adams inequalities in R4 and Trudinger-Moser inequalities in R2, Advances in Mathematics, 2020, 368:107143, 61pp. [8] Lam N., Lu G., A new approach to sharp Moser-Trudinger and Adams type inequalities:a rearrangementfree argument, J. Differential Equations, 2013, 255(3):298-325. [9] Lam N., Lu G., Sharp Adams type inequalities in Sobolev spaces W m, n/m (Rn) for arbitrary integer m, J. Differential Equations, 2012, 253:1143-1171. [10] Lam N., Lu G., Zhang L., Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities, Rev. Mat. Iberoam., 2017, 33:1219-1246. [11] Lieb E., Loss M., Analysis, 2nd Edn., Vol. 14. Amer. Math. Soc., Providence, 2001. [12] Lu G., Tang H., Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 2016, 16(3):581-601. [13] Moser J., Sharp form of an inequality by N. Trudinger, Indiana Univ. Maths J., 1971, 20:1077-1092. [14] Ozawa T., On critical cases of Sobolev's inequalities, J. Funct. Anal., 1995, 127(2):259-269. [15] Ruf B., Sani F., Sharp Adams-type inequalities in Rn, Trans. Amer. Math. Soc., 2013, 365(2):645-670. [16] Stein E., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, 1971. [17] Strauss W., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 1977, 55:149-162. [18] Talenti G., Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci., 1976, 3:697-718. [19] Tang H., Equivalence of Sharp Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Potential Analysis, doi. 10.1007/s11118-019-09769-9. [20] Tarsi C., Adams' inequality and limiting Sobolev embeddings into Zygmund spaces, Potential Anal., 2012, 37(4):353-385. [21] Trudinger N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 1967, 17:473-484.
|
[1] | 郭千桥, 胡云云. 次临界分数阶Laplace方程具有两个bubbles的变号解存在性[J]. 数学学报, 2016, 59(5): 659-676. | [2] | 李宏亮, 徐罕. 加权Lorentz空间上的连续模和Gagliardo--Nirenberg型不等式[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1225-1238. | [3] | 郑神州章腊萍. 次临界增长$P$-调和组的处处内部正则性[J]. Acta Mathematica Sinica, English Series, 2008, 51(5): 1001-101. | [4] | 谭昌眉. 加权Lorentz空间上的Littlewood-Paley算子[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 549-552. | [5] | 骆程. 带权Lorentz空间中的加权范数不等式[J]. Acta Mathematica Sinica, English Series, 1988, 31(6): 821-829. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23713
空间几何常数与集值非扩张映射的不动点左占飞重庆三峡学院数学与统计学院重庆404100SomeGeometricConstantsandFixedPointsforMultivaluedNonexpansiveMappingsZhanFeiZUODepartmentofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27临界或超临界增长分数阶SchrdingerPoisson方程正解的存在性王文波1,周见文1,李永昆1,李全清21.云南大学数学与统计学院昆明650500;2.红河学院数学学院蒙自661100ExistenceofPositiveSolutionsforFractionalS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间上p-fusion框架的若干等价描述林丽琼1,张云南21.福州大学数学与计算机科学学院福州350108;2.福建师范大学数学与信息学院福州350108SomeEquivalentDescriptionsofp-fusionFramesonBanachSpacesLiQiongLIN1 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有临界增长的分数阶Kirchhoff方程的半经典解赵顺能1,赵富坤21.浙江师范大学数学与计算机科学学院金华321004;2.云南师范大学数学学院昆明650500Semi-classicalSolutionsofFractionalKirchhoff-typeEquationswithCritic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子王盛荣,徐景实桂林电子科技大学数学与计算科学学院桂林541004CommutatorsofBilinearHardyOperatorsonWeightedHerzMorreySpaceswithVariableExpo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权Bloch空间上复合算子的线性组合张利,楚秀娇南阳师范学院南阳473061LinearCombinationsofCompositionOperatorsonWeightedBlochTypeSpaceLiZHANG,XiuJiaoCHUNanyangNormalUniversity,Nanya ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27bp(2)空间中的等距映射王瑞东,王普天津理工大学理学院天津300384TheIsometryonbp(2)SpaceRuiDongWANG,PuWANGDepartmentofMathematics,TianjinUniversityofTechnology,Tianjin300384,P.R.C ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27改进的Tsirelson空间TM上的Wigner定理熊晓蕾,谭冬妮天津理工大学数学系天津300384Wigner'sTheoremontheModifiedTsirelsonSpaceTMXiaoLeiXIONG,DongNiTANDepartmentofMathematics,TianjinUni ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非齐型空间上分数型Marcinkiewicz积分算子的加权估计林海波,王宸雁中国农业大学理学院北京100083WeightedEstimatesforFractionalTypeMarcinkiewiczIntegralOperatorsonNon-homogeneousSpacesHaiBoLIN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27TVS-锥度量空间中的统计收敛林艳芳,鲍玲鑫福建农林大学计算机与信息学院福州350002StatisticalConvergenceinTVS-coneMetricSpacesYanFangLIN,LingXinBAOSchoolofComputerandInformation,FujianAgri ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|