删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Sobolev—Lorentz范数约束下的次临界型Adams不等式

本站小编 Free考研考试/2021-12-27

Sobolev—Lorentz范数约束下的次临界型Adams不等式 朱茂春, 刘宇航江苏大学数学科学学院 镇江 212013 A Sharp Subcritical Adams Inequality in Lorentz Sobolev Space Mao Chun ZHU, Yu Hang LIUSchool of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(445 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文在Sobolev—Lorentz空间W 2L2,q(R4)的范数约束下得到了一个最佳的二阶次临界型Adams不等式.进一步,当次临界指标逼近最佳常数时,得到了Adams泛函的上、下界的估计.本文主要采用了Lam和Lu[A new approach to sharp Moser—Trudinger and Adams type inequalities:a rearrangement-free argument,J. Diff. Equ.,2013,255(3):298—325]的分割水平集方法.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-04-01
MR (2010):O178
基金资助:国家自然科学基金资助项目(11601190,11701162,11661006);江苏省青年基金资助项目(BK20160483);江苏大学基础基金资助项目(16JDG043)
引用本文:
朱茂春, 刘宇航. Sobolev—Lorentz范数约束下的次临界型Adams不等式[J]. 数学学报, 2021, 64(2): 231-242. Mao Chun ZHU, Yu Hang LIU. A Sharp Subcritical Adams Inequality in Lorentz Sobolev Space. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 231-242.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I2/231


[1] Adachi S., Tanaka K., Trudinger type inequalities in RN and their best exponents, Proc. Amer. Math. Soc., 1999, 128:2051-2057.
[2] Adams D. R., A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 1988, 128:385-398.
[3] Alberico A., Moser type inequalities for higher-order derivatives in Lorentz spaces, Potential Anal., 2008, 28:389-400.
[4] Alvino A., Ferone V., Trombetti G., Moser-type inequalities in Lorentz spaces, Potential Anal., 1996, 5:273-299.
[5] Cassani D., Tarsi C., A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in RN, Asymptot. Anal., 2009, 64(1-2):29-51.
[6] Chen L., Lu G., Zhang C., Sharp weighted Trudinger-Moser-Adams inequalities on the whole space and the existence of their extremals, Calc. Var. Partial Differential Equations, 2019, 58(4):132, 31 pp.
[7] Chen L., Lu G., Zhu M., Existence and nonexistence of extremals for critical Adams inequalities in R4 and Trudinger-Moser inequalities in R2, Advances in Mathematics, 2020, 368:107143, 61pp.
[8] Lam N., Lu G., A new approach to sharp Moser-Trudinger and Adams type inequalities:a rearrangementfree argument, J. Differential Equations, 2013, 255(3):298-325.
[9] Lam N., Lu G., Sharp Adams type inequalities in Sobolev spaces W m, n/m (Rn) for arbitrary integer m, J. Differential Equations, 2012, 253:1143-1171.
[10] Lam N., Lu G., Zhang L., Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities, Rev. Mat. Iberoam., 2017, 33:1219-1246.
[11] Lieb E., Loss M., Analysis, 2nd Edn., Vol. 14. Amer. Math. Soc., Providence, 2001.
[12] Lu G., Tang H., Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 2016, 16(3):581-601.
[13] Moser J., Sharp form of an inequality by N. Trudinger, Indiana Univ. Maths J., 1971, 20:1077-1092.
[14] Ozawa T., On critical cases of Sobolev's inequalities, J. Funct. Anal., 1995, 127(2):259-269.
[15] Ruf B., Sani F., Sharp Adams-type inequalities in Rn, Trans. Amer. Math. Soc., 2013, 365(2):645-670.
[16] Stein E., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, 1971.
[17] Strauss W., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 1977, 55:149-162.
[18] Talenti G., Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci., 1976, 3:697-718.
[19] Tang H., Equivalence of Sharp Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Potential Analysis, doi. 10.1007/s11118-019-09769-9.
[20] Tarsi C., Adams' inequality and limiting Sobolev embeddings into Zygmund spaces, Potential Anal., 2012, 37(4):353-385.
[21] Trudinger N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 1967, 17:473-484.

[1]郭千桥, 胡云云. 次临界分数阶Laplace方程具有两个bubbles的变号解存在性[J]. 数学学报, 2016, 59(5): 659-676.
[2]李宏亮, 徐罕. 加权Lorentz空间上的连续模和Gagliardo--Nirenberg型不等式[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1225-1238.
[3]郑神州章腊萍. 次临界增长$P$-调和组的处处内部正则性[J]. Acta Mathematica Sinica, English Series, 2008, 51(5): 1001-101.
[4]谭昌眉. 加权Lorentz空间上的Littlewood-Paley算子[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 549-552.
[5]骆程. 带权Lorentz空间中的加权范数不等式[J]. Acta Mathematica Sinica, English Series, 1988, 31(6): 821-829.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23713
相关话题/空间 数学 江苏大学 分数 科学学院