删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

临界或超临界增长分数阶Schrödinger—Poisson方程正解的存在性

本站小编 Free考研考试/2021-12-27

临界或超临界增长分数阶Schrödinger—Poisson方程正解的存在性 王文波1, 周见文1, 李永昆1, 李全清21. 云南大学数学与统计学院 昆明 650500;
2. 红河学院数学学院 蒙自 661100 Existence of Positive Solutions for Fractional Schrödinger-Poisson System with Critical or Supercritical Growth Wen Bo WANG1, Jian Wen ZHOU1, Yong Kun LI1, Quan Qing LI21. School of Mathematics and Statistics, Yunnan University, Kunming 650500, P. R. China;
2. Department of Mathematics, Honghe University, Mengzi 661100, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(499 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究如下分数阶Schrödinger—Poisson方程

其中s ∈(4/3,1),t ∈(0,1),f是在原点超线性无穷远次临界的连续非线性项,指数q ≥ 2s*=(3-2s)/6.当λ>0充分小时,我们利用变分方法证明上述问题正解的存在性.本文的主要贡献是处理了超临界情形.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-01-20
MR (2010):O175.29
基金资助:国家自然科学基金资助项目(11901514,11861072,11961078,11561072,11801153)
通讯作者:李永昆,E-mail:yklie@ynu.edu.cnE-mail: yklie@ynu.edu.cn
引用本文:
王文波, 周见文, 李永昆, 李全清. 临界或超临界增长分数阶Schrödinger—Poisson方程正解的存在性[J]. 数学学报, 2021, 64(2): 269-280. Wen Bo WANG, Jian Wen ZHOU, Yong Kun LI, Quan Qing LI. Existence of Positive Solutions for Fractional Schrödinger-Poisson System with Critical or Supercritical Growth. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 269-280.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I2/269


[1] Alves C., Soare S., Souto M., Schrödinger-Poisson equations with supercritical growth, Electron. J. Differential Equations, 2011, 1:11 pp.
[2] Ambrosio V., Multiplicity and concentration results for a fractional Choquard equation via penalization method, Potential Anal., 2019, 50:55-82.
[3] Bertoin J., Lévy Processes, Cambridge Tracts in Mathematics, Vol. 121, Cambridge University Press, Cambridge, 1996.
[4] Bisci G. M., Radulescu V., Servadei R., Variational Methods for Nonlocal Fractional Problems, Encyslopedia of Mathematics and Its Application, Vol. 162. Cambridge University Press, Cambridge, 2016.
[5] Bucur C., Valdinoci E., Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, Springer, Unione Matematica Italiana, Bologna, 2016.
[6] Chen W., Li Y., Ma P., The Fractional Laplacian, Lecture Notes in 2017.
[7] del Pino M., Felmer P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 1996, 4:121-137.
[8] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 2012, 136:521-573.
[9] Felmer P., Quass A., Tang J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142:1237-1262.
[10] Giammetta A. R., Fractional Schrödinger-Poisson-Slater system in one dimension, 2014, arXiv:1405.2796v1.
[11] Laskin N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 2000, 268:298-305.
[12] Li Q., Teng K., Wu X., et al., Existence of nontrivial solutions for fractional Schrödinger equations with critical or supercritical growth, Math. Meth. Appl. Sci., 2019, 42:1480-1487.
[13] Liu W., Existence of multi-bump solutions for the fractional Schrödinger-Poisson system, J. Math. Phys. 2016, 57:091502.
[14] Rabinowitz P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., Vol. 65, American Mathematical Society, Providence, RI, 1986.
[15] Stein E., Shakarchi R., Fourier Analysis, Princeton Lectures in Analysis, Vol. 1, Princeton University Press, Princeton, 2003.
[16] Teng K., Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 2016, 261:3061-3106.
[17] Wang W., Yu Y., Li Y., On the asymptotically cubic fractional Schrödinger-Poisson system, Appl. Anal., 2019, DOI:10.1080/00036811.2019.1616695.
[18] Zhao L., Zhao F., Positive solutions for Schrödinger-Poisson equations with critical exponent, Nonlinear Anal., 2009, 70:2150-2164.

[1]徐家发, 刘立山, 蒋继强. 分数阶Schrödinger-Kirchhoff 方程无穷多高能量解的存在性[J]. 数学学报, 2020, 63(3): 209-220.
[2]王文波, 李全清. 拟线性Schrödinger-Poisson方程正解、负解、变号解的存在性[J]. 数学学报, 2018, 61(4): 685-694.
[3]陈少林, Miodrag MATELJEVIĆ, Saminathan PONNUSAMY, 王仙桃. 调和函数的Lipschitz型空间和Landau-Bloch型定理[J]. 数学学报, 2017, 60(6): 1025-1036.
[4]王培合;沈纯理;. Laplacian第一特征值整体曲率Pinching的一个结果[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 115-122.
[5]崔国忠;江成顺;任华国. 具有吸收-反射边界的Boltzmann-Poisson输运模型的整体弱解[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 857-864.
[6]尹会成;郑琴;金树泽. 二维无旋可压缩Euler方程解的几何爆破[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 351-360.
[7]邹雄;陈亚浙. 椭圆型方程的边界正则性与Dini条件[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 701-710.
[8]王光寅;麦明澂;陆柱家. 关于非主型偏微分方程的唯一性的一点注记[J]. Acta Mathematica Sinica, English Series, 1979, 22(6): 713-718.
[9]黃宏嘉. 电子学中的若干微分方程間題[J]. Acta Mathematica Sinica, English Series, 1961, 11(1): 76-85.
[10]齐民友. 论数据给在拋物型退缩线上的一类双曲型方程之哥西问题[J]. Acta Mathematica Sinica, English Series, 1958, 8(4): 521-530.
[11]丁夏畦. 混合型微分方程[J]. Acta Mathematica Sinica, English Series, 1955, 5(2): 193-204.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23717
相关话题/数学 分数 数据 云南大学 统计学院