删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于截尾数据指数Pareto分布应力-强度模型的可靠性

本站小编 Free考研考试/2021-12-27

基于截尾数据指数Pareto分布应力-强度模型的可靠性 程从华肇庆学院数学与统计学院 广东 526061 Reliability of Stress-strength Model for Exponentiated Pareto Model with Censored Data Cong Hua CHENGSchool of Mathematics and Statistics, Zhaoqing University, Guangdong 526061, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(685 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在II型双截尾删失计划下,讨论了当系统被独立的随机施加指数Pareto (EP)压力时的系统可靠性问题.作者给出了系统可靠性参数的不同点估计和区间估计,其中点估计包括一致最小方差无偏估计(UMVUE)和最大似然估计(MLE);区间估计包括精确置信区间,近似置信区间和bootstrap的区间估计.为了评价不同估计方法效果,作者提供数值模拟结果;最后提供了一个真实数据的分析结果来演示本文提出的方法.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-11-05
MR (2010):O212.1
O213.2
基金资助:广东省自然科学基金(2018A030313829),广东省普通高校特色创新类项目(2019KTSCX202),广东省高等教育教学研究和改革项目(2019625);肇庆教育发展研究院项目(ZQJYY2019033)和肇庆学院青年项目(201930)}
作者简介: 程从华,E-mail:chengconghua@zqu.edu.cn
引用本文:
程从华. 基于截尾数据指数Pareto分布应力-强度模型的可靠性[J]. 数学学报, 2020, 63(3): 193-208. Cong Hua CHENG. Reliability of Stress-strength Model for Exponentiated Pareto Model with Censored Data. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 193-208.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I3/193


[1] Aarssen K., De Haan L., On the maximal life span of humans, Mathematical Population Studies, 1994, 4:259-281.
[2] Ahmad K. E., Fakhry M. E., Jaheen Z. F., Empirical Bayes estimation of P (Y < X) and characterizations of the Burr-type X model, Journal of Statistical Planning and Inference, 1997, 64:297-308.
[3] Al-Mutairi D. K., Ghitany M. E., Kundu D., Inferences on stress-strength reliability from Lindley distributions, Comm Statist Theory Methods, 2013, 42:1443-1463.
[4] Afify W. M., On estimation of the exponentiated pareto distribution under different sample scheme, Applied Mathematical Sciences, 2010, 4:393-402.
[5] Arnold B. C., Balakrishnan N., Nagaraja H. N., A First Course in Order Statistics, Classics in Applied Mathematics, SIAM, Philadelphia, PA, 2008.
[6] Balakrishnan N., Chan P. S., Maximum likelihood estimation for the three-parameter log-gamma distribution under Type-II censoring, in Advances in Reliability, N. Balakrishnan, ed., CRC Press, Boca Raton, FL, 1995.
[7] Basirat M., Baratpour S., Ahmadi J., Statistical inferences for stress-strength in the proportional hazard models based on progressive Type-II censored samples, Journal of Statistical Computation and Simulation, 2015, 85(3):431-449.
[8] Borovkov A. A., Mathematical Statistics, Gordon and Breach Science Publishers, Amsterdam, 1998.
[9] Daragahi-Noubary G. R., On tail estimation:an improved method, Mathematical Geology, 1989, 21:829-842.
[10] Downtown F., The estimation of P (X > Y) in the normal case, Technometrics, 1973, 15:551-558.
[11] kklhEfron B., Bootstrap methods:Another look at the jackknife, Ann. Stat., 1979, 7:1-26.
[12] Efron B., Tibshirani R. J., Introduction to the Bootstrap, Chapman & Hall, New York, 1993.
[13] Gupta R. C., Gupta R. D., Gupta P. L., Modeling failure time data by Lehman alternatives, Communications in Statistics-Theory and Methods, 1998, 27(4):887-904.
[14] Ghitany M. E., Atieh B., Nadarajah S., Lindley distribution and its application, Math Comput Simul., 2008, 78:493-506.
[15] Kotz S., Lumelskii Y., Pensky M., The Stress-Strength Model and its Generalizations, Theory and Applications, World Scientific Publishing Co., 2003.
[16] Kundu D., Raqab M. Z., Estimation of R=P (Y < X) for Three-Parameter Weibull Distribution, Statistics and Probability Letters, 2009, 79:1839-1846.
[17] Lehmann E. L., Casella G., Theory of Point Estimation, 2nd ed, Springer-Verlag, New York, 2009.
[18] Owen D. B., Craswell K. J., Hanson D. L., Nonparametric Upper Confidence Bounds for P (Y < X) and Confidence Limits for P (Y < X) When X and Y are Normal, Journal of the American Statistical Association, 1977, 59:906-924.
[19] Pickands J., Statistical inference using extreme order statistics, Annals of Statistics, 1975, 3:119-131.
[20] Pan G. M., Wang X. P., Zhou W., Nonparametric statistical inference for P (X < Y < Z), the Indian Journal of Statistics, 2013, 75A(1):118-138.
[21] Raqab M. Z., Madi M. T., Kundu D., Estimation of P (Y < X) for the 3-Parameter generalized exponential distribution, Communications in Statistics-Thoery and Methods, 2008, 37(18):2854-2864.
[22] Raqab M. Z., On the maximum likelihood prediction of the exponential distribution based on doubly Type II censored samples, Pakistan J. Stat., 1995, 11:1-10.
[23] Sarhan A. E., Estimation of the mean and standard deviation by order statistics, Part III, Ann. Math. Stat., 1995, 26:576-592.
[24] Shawky A. I., Abu-Zinadah, Hanna H., Exponentiated pareto distribution:Diifferent method of estimations, Int. J. Contemp. Math. Sciences, 2009, 4:677-693.
[25] Singh S. K., Singh U., Kumar M., et al., Estimation of Parameters of Exponentiated Pareto Distribution for Progressive Type-II Censored Data with Binomial Random Removals Scheme, Electronic Journal of Applied Statistical Analysis, 2013, 6:130-148.
[26] Surles J. G., Padgett W. J., Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Analysis, 2001, 7:187-200.
[27] Tong H., On the estimation of P (Y < X) for exponential families, IEEE Trans, Reliabil, 1977, 26:54-56.
[28] van Montfort M. A. J., Witter J. V., Testing exponentiality against generalized Pareto distribution, Journal of Hydrology, 1985, 78:305-315.
[29] Wu S. F., Interval estimation for the two-parameter exponential distribution based on the doubly type II censored sample, Qual. Quantity, 2007, 41:489-496.
[30] Wasserman L., All of Statistics:A Concise Course in Statistical Inference, Springer, New York, 2003.
[31] Zelterman D., A statistical distribution with an unbounded hazard function and its application to a theory from demography, Biometrics, 1992, 48:807-818.

[1]孙桂萍, 厉诚博, 周勇. 长度偏差右删失数据剩余寿命的分位数回归[J]. 数学学报, 2020, 63(1): 1-18.
[2]李婉星, 龙永红, 薛清水. 竞争风险数据和协变量相依权重下可加可乘的子分布风险率模型[J]. 数学学报, 2018, 61(3): 353-374.
[3]周勇, 田军. 删失数据下医药费用的经验似然估计[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 817-828.
[4]赵目, 陈柏成, 周勇. 纵向数据下关于估计方程估计[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 1-16.
[5]邱红兵, 罗季. 线性模型中F-检验的稳健性[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 385-392.
[6]马铁丰, 叶仁道, 贾丽杰. 多元线性混合模型方差分量矩阵的非负估计[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 349-362.
[7]胡宏昌;. 长相依半参数回归模型的小波估计[J]. Acta Mathematica Sinica, English Series, 2009, (04): 19-28.
[8]刘强;薛留根;陈放;. 删失数据下部分线性EV模型中参数的经验似然置信域[J]. Acta Mathematica Sinica, English Series, 2009, (03): 135-146.
[9]李志强;薛留根;. 带有随机缺失数据的广义半参数模型的借补估计[J]. Acta Mathematica Sinica, English Series, 2009, (02): 95-102.
[10]叶仁道;王松桂;. Fay-Herriot模型中两步估计的均方误差矩阵[J]. Acta Mathematica Sinica, English Series, 2009, (02): 109-116.
[11]李建涛;郑敏;刘艳玲;. 伪可加模型的稳健估计[J]. Acta Mathematica Sinica, English Series, 2009, (02): 117-130.
[12]陈冉冉, 李高荣. 面板数据交互固定效应模型的方差分量检验[J]. 数学学报, 2017, 60(5): 763-778.
[13]孙琴, 曲连强. 带相依终止事件的复发事件数据的可加可乘比率模型[J]. 数学学报, 2019, 62(1): 87-102.
[14]陈建宝, 丁飞鹏. 固定效应部分线性可加面板数据模型的惩罚二次推断估计[J]. 数学学报, 2019, 62(1): 103-122.
[15]田玉柱, 李二倩, 田茂再, 罗幼喜. 失混合效应模型的分位回归及变量选择[J]. 数学学报, 2017, 60(2): 315-334.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23594
相关话题/数据 数学 可靠性 系统 检验