删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长度偏差右删失数据剩余寿命的分位数回归

本站小编 Free考研考试/2021-12-27

长度偏差右删失数据剩余寿命的分位数回归 孙桂萍1,2, 厉诚博3, 周勇4,51 上海财经大学统计与管理学院 上海 200433;
2 枣庄学院数学与统计学院 枣庄 277100;
3 东北财经大学统计学院 大连 116025;
4 华东师范大学经管学部统计交叉科学研究院 上海 200062;
5 中国科学院数学与系统科学研究院 北京 100190 Quantile Residual Regression with Length-Biased and Right-Censored Data Gui Ping SUN1,2, Cheng Bo LI3, Yong ZHOU4,51 School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, P. R. China;
2 School of Mathematics and Statistics, Zaozhuang University, Zaozhuang 277100, P. R. China;
3 School of Statistics, Northeast University of Finance and Economics, Dalian 116025, P. R. China;
4 Faculty of Economics and Management, East China Normal University, Shanghai 200062, P. R. China;
5 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(853 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究长度偏差数据下剩余寿命分位数模型的估计方法,充分考虑有偏抽样机制对模型估计的影响.如果忽略这种有偏性会导致估计产生严重偏差甚至错误的结果.本文首先针对长度偏差右删失数据的剩余寿命分位数提出了对数形式的线性回归模型,对删失变量与协变量独立和不独立的两种情况利用估计方程给出了模型参数的估计.其次,通过经验过程和弱收敛理论给出了参数估计的相合性和渐近正态性.最后,本文对提出的估计方法进行了数值模拟并用该方法对奥斯卡奖数据进行分析.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-10-17
MR (2010):O212
O212.1
基金资助:国家自然科学重大研究计划重点项目(91546202);国家自然科学基金委重点项目(71931004)
作者简介: 孙桂萍,E-mail:sunguiping1008@163.com;厉诚博,E-mail:lichengbo@dufe.edu.cn;周勇,E-mail:yzhou@amss.ac.cn
引用本文:
孙桂萍, 厉诚博, 周勇. 长度偏差右删失数据剩余寿命的分位数回归[J]. 数学学报, 2020, 63(1): 1-18. Gui Ping SUN, Cheng Bo LI, Yong ZHOU. Quantile Residual Regression with Length-Biased and Right-Censored Data. Acta Mathematica Sinica, Chinese Series, 2020, 63(1): 1-18.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I1/1


[1] Asgharian M., Wolfson D. B., Asymptotic behavior of the unconditional NPMLE of the length-biased survivor function from right censored prevalent cohort data, The Annals of Statistics, 2005, 33:2109-2131.
[2] Bai F. F., Huang J., Zhou Y., Semiparametric inference of mean residual life model with right censored and length-biased data, Statistica Sinica, 2016, 26:1129-1158.
[3] Chen X., Linton H. O., Keilegom I. V., Estimation of semiparametric models when criterion function is not smooth, Econometrica, 2003, 71:1591-1608.
[4] Chen Y. Q., Additive expectancy regression, J. Amer. Statist. Assoc., 2007, 102(477):153-166.
[5] Chen Y. Q., Cheng S., Semiparametric regression analysis of mean residual life with censored survival data, Biometrika, 2005, 92(1):19-29.
[6] Chen Y. Q., Cheng S., Linear life expectancy regression with censored data, Biometrika, 2006, 93(2):303-313.
[7] Cox D. R., Partial likelihood, Biometrika, 1975, 62:269-276.
[8] Efron B., Bootstrap methods:Another look at the jackknife, Annals of Statistics, 1979, 7:1-26.
[9] Fleming T. R., Harrington D., Counting Processes and Survival Analysis, Wiley, New York, 1990.
[10] Gelfand A. E., Kottas A., Bay esian semiparametric regression for median residual life, Scandinavian Journal of Statistics, 2003, 30:651-665.
[11] Hall W. J., Wellner J. A., Mean Residual Life, in Proceedings of the International Symposium on Statistics and Related Topics, M, Csörgö D. A., Dawson J. N. K. Rao and A. K. M. E. Saleh, eds, North Holland, Amsterdam, 1984, 169-184.
[12] Jung S. H., Jeong J. H., Bandos H., Regression on quantile residual life, Biometrics, 2009, 65:1203-1212.
[13] Koenker R., Bassett G. J., Regression quantiles, Econometrica, 1978, 46:33-50.
[14] Koenker R., Quantile Regression, Cambridge University Press, New York, 2005.
[15] Li C. B., Hu S. L., Zhou Y., The estimation for the proportional mean residual lifetime function using length-biased survival data, Acta Math. Sin., Chin. Ser., 2018, 61(4):865-871.
[16] Lin C. J., Zhang L., Zhou Y., Inference on quantile residual life function under right censored data, Journal of Nonparametric Statistics, 2016, 28:617-643.
[17] Lin C. J., Zhou Y., Semiparametric varying-coefficient model with right-censored and length-biased data, Journal of Multivariate Analysis, 2016, 152:119-144.
[18] Liu P., Wang Y., Zhou Y., Quantile residual lifetime with right-censored and length-biased data, Annals of the Institute of Statistical Mathematics, 2015, 67:999-1028.
[19] Liu Y. T., Liu P., Zhou Y., Smoothing nonparametric estimate of quantile residual lifetime under competing risks, Acta Mathematicae Applicatae Sinica, 2015, 38:109-124.
[20] Maguluri G., Zhang C. H., Estimation in the mean residual life regression model, Journal of the Royal Statistical Society, Series B, 1994, 56(3):477-489.
[21] Oakes D., Dasu T., A note on residual life, Biometrika, 1990, 77(2):409-410.
[22] Redelmeier D. A., Singh S. M., Survival in academy award-winning actors and actresses, Annals of Internal Medicine, 2001, 134:955-962.
[23] Shen Y., Ning J., Qin J., Analyzing length-biased data with semiparametric transformation and accelerated failure time models, Journal of the American Statistical Association, 2009, 104:1192-1202.
[24] Sun L. Q., Song Z., Zhang Z., Mean residual life models with time-dependent coefficients under right censoring, Biometrika, 2012, 99:185-197.
[25] Sun L. Q., Zhang Z. G., A class of transformation mean residual life models with censored survival data, J. Amer. Statist. Assoc., 2009, 104:803-815.
[26] Sylvestre M. P., Huszti E., Hanley J. A., Do Oscar winners live longer than less successful peers? A reanalysis of the evidence, Annals of Internal Medicine, 2006, 145(5):361-363.
[27] Vardi Y., Nonparametric estimation in the presence of length bias, The Annals of Statistics, 1982, 10:616-620.
[28] Vardi Y., Empirical distribution in selection bias models, The Annals of Statistics, 1985, 13:178-203.
[29] Van der Vaart A. W., Wellner J. A., Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996.
[30] Wang H., Wang L., Quantile regression analysis of length-biased survival data, Stat, 2014, 3:31-47.
[31] Wang Y. X., Liu P., Zhou Y., Quantile residual lifetime for left-truncated and right-censored data, Sci. China Math., 2015, 58(6):1217-1234.
[32] Wang Y. X., Zhou Z. F., Zhou X., et al., Nonparametric and semiparametric estimation of quantile residual lifetime for length-biased and right-censored data, Canadian Journal of Statistics, 2017, 45:220-250.
[33] Yang G., Life expectancy under random censorship, Stochastic Processes Appl., 1997, 6:33-39.

[1]刘玉涛, 潘婧, 周勇. 右删失长度偏差数据分位数差的非参数估计[J]. 数学学报, 2020, 63(2): 105-122.
[2]厉诚博, 胡淑兰, 周勇. 长度偏差右删失数据下[1mm]比例均值剩余寿命模型的估计方法[J]. 数学学报, 2018, 61(5): 865-880.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23547
相关话题/数据 数学 统计 上海 统计学院