删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

针对面板数据的半参数变系数可加模型的估计和推断

本站小编 Free考研考试/2021-12-27

针对面板数据的半参数变系数可加模型的估计和推断 崔晓静上海财经大学统计与管理学院, 上海 200433 Estimation and Inference of a Semiparametric Varying-coefficient Additive Model for Panel Data CUI XiaojingSchool of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China
摘要
图/表
参考文献
相关文章(6)
点击分布统计
下载分布统计
-->

全文: PDF(648 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究针对面板数据的半参数变系数可加模型的估计和推断问题,该模型将因变量与自变量之间的关系建模成未知函数的形式,并且假设它们之间的关系是随时间变化的.本文基于B样条方法估计未知的参数和函数.本文在允许(N,T)→∞的情况下建立各个估计量的渐近性质.通过大量的模拟评估所提出的估计方法的表现.最后,本文将所推荐的模型用于调查Fama-French三因子的时变行为.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-20
PACS:62G05
62G20
基金资助:国家自然科学基金(11971291)和上海财经大学创新团队资助项目.

引用本文:
崔晓静. 针对面板数据的半参数变系数可加模型的估计和推断[J]. 应用数学学报, 2021, 44(3): 307-329. CUI Xiaojing. Estimation and Inference of a Semiparametric Varying-coefficient Additive Model for Panel Data. Acta Mathematicae Applicatae Sinica, 2021, 44(3): 307-329.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I3/307


[1] Baltagi B. Econometric analysis of panel data. New York: John Wiley & Sons, 2008
[2] Hsiao C. Analysis of panel data. New York: Cambridge University Press, 2014
[3] Li J L, Zhang W Y, Kong E. Factor models for assest returns based on transformed factors. Journal of Econometrics, 2018, 207(2): 432–448
[4] Fama E, French K. The cross-section of expected stock returns. Journal of Finance, 1992, 47(2): 427–465
[5] Fama E, French K. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 1993, 33(1): 3–56
[6] Fan J, Fan Y, Lv J. High dimensional covariance matrix estimation using a factor model. Journal of Econometrics, 2008, 147(1): 186–197
[7] Fan J, Liao Y, Mincheva M. High dimensional covariance matrix estimation in approximate factor models. Annals of Statistics, 2011, 39(6): 3320–3356
[8] Guo S, Box J L, Zhang W. A dynamic structure for high-dimensional covariance matrices and its application in portfolio allocation. Journal of the American Statistical Association, 2017, 112(517): 235–253
[9] Horowitz J L, Loughran T, Savin N E. Three analysis of the firm size premium. Journal of Empirical Finance, 2000, 7(2): 143–153
[10] Chan L K C, Karceski J, Lakonishok J. New paradigm or same old hype in equity investing? Financial Analysts Journal, 2000, 56(4): 23–26
[11] Robinson P M. Nonparametric trending regression with cross-sectional dependence. Journal of Econometrics, 2012, 169(1): 4–14
[12] Chen B, Huang L. Nonparametric testing for smooth structural changes in panel data models. Journal of Econometrics, 2018, 202(2): 245–267
[13] Hu L, Huang T, You J. Estimation and identification of a varying-coefficient additive model for locally stationary process. Journal of the American Statistical Association, 2019, 114(527): 1191–1204
[14] Opsomer J, Ruppert D. Fitting a bivariate additive model by local polynomial regression. Annals of Statistics, 1997, 25(1): 186–211
[15] Mammen E, Linton O, Nielsen J P. The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Annals of Statistics, 1999, 27(5): 1443–1490
[16] Hastie T, Tibshirani R. Varying-Coefficient models. Journal of the Royal Statistical Society, Series B, 1993, 55(4): 757–796
[17] Fan J, Zhang W. Statistical methods with varying coefficient models. Statistics and Its Interface, 2008, 1(1): 179–195
[18] Cai Z. Trending time-varying coefficient time series models with serially correlated errors. Journal of Econometrics, 2007, 136(1): 163–188
[19] Vogt M. Nonparametric regression for locally stationary time series. Annals of Statistics, 2012, 40(5): 2601–2633
[20] Pei Y, Huang T, You J. Nonparametric fixed effects model for panel data with locally stationary regressors. Journal of Econometrics, 2018, 202(2): 286–305
[21] Dahlhaus R. Locally stationary processes. Handbook of Statistics, 2012, 30: 351–413
[22] de Boor C. A practical guide to splines. New York: Springer, 2001
[23] Ma S, Song X K. Varying index coefficient models. Journal of the American Statistical Association, 2015, 110(509): 341–356
[24] Liu R, Yang L, Härdle W K. Oracally efficient two-step estimation of generalized additive model. Journal of the American Statistical Association, 2013, 108(502): 619–631
[25] Wang L, Yang L J. Simultaneous confidence bands for time-series prediction function. Journal of Nonparametric Statistics, 2010, 22(8): 999-1018
[26] Cai Z, Fan J, Yao Q. Functional coefficient regression models for nonlinear time series. Journal of the American Statistical Association, 2000, 95(451): 941–956
[27] Constantine W, Percival D. fractal: Fractal Time Series Modeling and Analysis, version 2.0-1 available, https://cran.r-project.org/package=fractal, 2016
[28] Fan J, Yao Q. Nonlinear time series: nonparametric and parametric methods. New York: Springer, 2003

[1]潘日晶, 姚志强, 刘晓芬. 周期B样条基转换矩阵的表示和计算[J]. 应用数学学报(英文版), 2012, (2): 263-282.
[2]苟列红. 左截断右删失数据下半参数模型风险率函数估计[J]. 应用数学学报(英文版), 2005, 28(4): 675-688.
[3]潘日晶. B样条基转换矩阵的解析表示和计算公式[J]. 应用数学学报(英文版), 2005, 28(3): 441-452.
[4]Qiang LIU, Yu Ying JIANG, Ke Fa WU. 半参数变量含误差函数关系模型的小波估计[J]. 应用数学学报(英文版), 2005, 28(2): 296-307.
[5]潘日晶. B样条基的转换矩阵及其应用[J]. 应用数学学报(英文版), 2003, 26(1): 91-101.
[6]柴根象, 孙平, 蒋泽云. 半参数回归模型的二阶段估计[J]. 应用数学学报(英文版), 1995, 18(3): 353-363.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14908
相关话题/应用数学 数据 统计 未知 上海财经大学