删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于病例队列数据的比例风险模型的诊断

本站小编 Free考研考试/2021-12-27

基于病例队列数据的比例风险模型的诊断 余吉昌, 曹永秀中南财经政法大学统计与数学学院 武汉 430073 Model Diagnostics for the Proportional Hazards Model with Case-Cohort Data Ji Chang YU, Yong Xiu CAOSchool of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(723 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要病例队列设计是一种在生存分析中广泛应用的可以降低成本又能提高效率的抽样方法.对于病例队列数据,已经有很多统计方法基于比例风险模型来估计协变量对生存时间的影响.然而,很少有工作基于病例队列数据来检验模型的假设是否成立.在这篇文章中,我们基于渐近的零均的值随机过程提出了一类检验统计量,这类检验统计量可以基于病例队列数据来检验比例风险模型的假设是否成立.我们通过重抽样的方法来逼近上述检验统计量的渐近分布,通过数值模拟来研究所提方法在有限样本下的表现,最后将所提出的方法应用于一个国家肾母细胞瘤研究的真实数据集上.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-01-23
MR (2010):O212.2
基金资助:国家自然科学基金(11501578,11701571);中央高校基本科研业务费团队项目(31511911201)
作者简介: 余吉昌,E-mail:yujc@zuel.edu.cn;曹永秀,E-mail:yxcao@zuel.edu.cn
引用本文:
余吉昌, 曹永秀. 基于病例队列数据的比例风险模型的诊断[J]. 数学学报, 2020, 63(2): 137-148. Ji Chang YU, Yong Xiu CAO. Model Diagnostics for the Proportional Hazards Model with Case-Cohort Data. Acta Mathematica Sinica, Chinese Series, 2020, 63(2): 137-148.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I2/137


[1] Borgan O., Langholz B., Samuelsen S., et al., Exposure stratified case-cohort designs, Lifetime Data Analysis, 2000, 6:39-58.
[2] Breslow N., Cain K., Logistic regression for two-stage case-control data, Biometrika, 1988, 75:11-20.
[3] Breslow N, Holubkov R., Maximum likelihood estimation of logistic regression parameters under two-phase, outcome-dependent sampling, Journal of the Royal Statistical Society, Series B, 1997, 59:447-461.
[4] Cao Y., Yu J., Liu Y., Optimal generalized case-cohort analysis with Cox's proportional hazards model, Acta Mathematicae Applicatae Sinica, English Series, 2015, 31:841-854.
[5] Chen K., Lo S., Case-cohort and case-control analysis with Cox's model, Biometrika, 1999, 86:755-764.
[6] Chen H. Y., Fitting semiparametric transformation regression models to data from a modified case-cohort design, Biometrika, 2001, 88:255-268.
[7] Deng L., Ding J., Liu Y., et al., Regression analysis for the proportional hazards model with parameter constraints under case-cohort design, Computational Statistics and Data Analysis, 2018, 117:194-206.
[8] Ding J., Chen X., Fang H., et al., Case-cohort design for accelerated hazards model, Statistics and Its Interface, 2018, 11:657-668.
[9] Ding J., Lu T., Cai J., et al., Recent progresses in outcome-dependent sampling with failure time data, Lifetime Data Analysis, 2017, 23:57-82.
[10] Ding J., Zhou H., Liu Y., et al., Estimating effect of environmental contaminants on women's subfecundity for the MoBa study data with an outcome-dependent sampling scheme, Biostatistics, 2014, 15:636-650.
[11] Fleming T., Harrington D., Counting Processes and Survival Analysis, Wiley, New York, 1991.
[12] Kang S., Lu W., Liu M., Efficient estimation for accelerated failure time model under case-cohort and nested casecontrol sampling, Biometrics, 2017, 73:114-123.
[13] Kim S., Cai J., Lu W., More efficient estimators for case-cohort studies, Biometrika, 2013, 100:695-708.
[14] Kong L., Cai J., Case-cohort analysis with accelerated failure time model, Biometrics, 2009, 65, 135-142.
[15] Kong L., Cai J., Sen P., Weighted estimating equations for semiparametric transformation models with censored data from a case-cohort design, Biometrika, 2004, 91:305-319.
[16] Kosorok M., Introduction to Empirical Processes and Semiparametric Inference, Springer, New York, 2008.
[17] Kulich M., Lin D., Additive hazards regression for case-cohort studies, Biometrika, 2000, 87:73-87.
[18] Lee C., Ning J., Shen Y., Model diagnostics for the proportional hazards model with length-biased data, Lifetime Data Analysis, 2019, 1:79-96.
[19] Lin D., Wei L., Ying Z., Checking the Cox model with cumulative sums of martingale-based residuals, Biometrika, 1993, 80:557-572.
[20] Lu W., Liu M., Chen Y., Testing goodness-of-fit for the proportional hazards model based on nested case-control data, Biometrics, 2014, 70:845-851.
[21] Lu W., Tsiatis A., Semiparametric transformation models for the case-cohort study, Biometrika, 2006, 93:207-214.
[22] Prentice R., A case-cohort design for epidemiologic cohort studies and disease prevention trials, Biometrika, 1986, 73:1-11.
[23] Prentice R., Pyke R., Logistic disease incidence models and case-control studies, Biometrika, 1979, 66:403-412.
[24] Qi L., Wang C., Prentice R., Weighted estimators for proportional hazards regression with missing covariates, Journal of the American Statistical Association, 2005, 100:1250-1263.
[25] Self S., Prentice R., Asymptotic distribution theory and efficiency results for case-cohort studies, Annals of Statistics, 1988, 16:64-81.
[26] Spiekerman C., Lin D., Checking the marginal Cox model for correlated failure time data, Biometrika, 1996, 83:143-156.
[27] Wang X., Zhou H., Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling, Biometrics, 2010, 66:502-511.
[28] Weaver M., Zhou H., An estimated likelihood method for continuous outcome regression models with outcome-dependent sampling, Journal of The American Statistical Association, 2005, 100:459-469.
[29] Xue X., Xie X., Gunter M., et al., Testing the proportional hazards assumption in case-cohort analysis, BMC Medical Research Methodology, 2013, 13:88.
[30] Yu J., Liu Y., Cai J., et al., Outcome-dependent sampling design and inference for Cox's proportional hazards Model, Journal of Statistical Planning and Inference, 2016, 178:24-36.
[31] Yu J., Liu Y., Sandler D., et al., Statistical inference for the additive hazards model under outcome-dependent sampling, Canadian Journal of Statistics, 2015, 43:436-453.
[32] Zhou H., Weaver M., Qin J., et al., A semiparametric empirical likelihood method for data from an outcomedependent sampling scheme with a continuous outcome, Biometrics, 2002, 58:413-421.

[1]许凯, 何道江. 有缺失数据的条件独立正态母体中参数的最优同变估计[J]. 数学学报, 2016, 59(6): 783-794.
[2]李涛, 吴边. 基于样本均值的最优无重叠k-序对排序集抽样[J]. 数学学报, 2017, 60(6): 897-910.
[3]刁云霞, 晏舒, 丁洁丽. 基于因变量抽样设计下线性回归模型的假设检验问题[J]. 数学学报, 2018, 61(6): 1003-1020.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23573
相关话题/数据 检验 统计 比例 数学