删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带终止事件的特定治疗复发事件均值比例的半参估计

本站小编 Free考研考试/2021-12-27

带终止事件的特定治疗复发事件均值比例的半参估计 马燕1, 孙晓伟21. 齐鲁师范学院数学学院, 济南 250013;
2. 北京交通大学理学院数学系, 北京 100044 Semiparametric Estimation of Ratios in Treatment-specific Recurrent Event Means with a Terminal Event MA Yan1, SUN Xiaowei21. Department of Mathematics, Qilu Normal University, Jinan 250013, China;
2. Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, China
摘要
图/表
参考文献
相关文章(8)
点击分布统计
下载分布统计
-->

全文: PDF(446 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要复发事件数据在生物医学研究中十分常见,而一个终止事件可能会阻止复发事件的进一步发生.在比较治疗效果的研究中,边际均值常常是人们感兴趣的指标,而且特定治疗事件的均值比例通常不会随着时间推移而保持不变.本文提出了一种半参数方法来比较特定治疗的复发事件均值,该方法结合了针对终止事件的比例风险率模型和针对条件复发事件率的乘性模型.在本文中,治疗效果由特定治疗的复发事件均值比例来衡量.我们给出了该比例的估计过程,并且证明了估计的渐近性质.最后我们通过数值模拟评估了文中所提估计的有限样本性质,并将所提方法应用于膀胱癌数据研究中,从而验证该方法的有效性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-08
PACS:O212.7

引用本文:
马燕, 孙晓伟. 带终止事件的特定治疗复发事件均值比例的半参估计[J]. 应用数学学报, 2020, 43(6): 949-965. MA Yan, SUN Xiaowei. Semiparametric Estimation of Ratios in Treatment-specific Recurrent Event Means with a Terminal Event. Acta Mathematicae Applicatae Sinica, 2020, 43(6): 949-965.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I6/949


[1] Byar D P. The Veterans Administration study of chemoprophylaxis for recurrent stage I bladder tumors:Comparisons of placebo, pyridoxine and topical thiotepa. In:Bladder Tumors and Other Topics in Urological Oncology, M. Pavone-Macaluso, P. H. Smith, and F. Edsmyr (eds). New York:Plenum, 1980, 363-370
[2] Albert P S. A two-state Markov mixture model for a time series of epileptic seizure counts. Biometrics, 1991, 47:1371-1381
[3] Hobson R W, Weiss D G, Fields W S, Goldstone J, Moore W S, Towne J B, Wright C B, the Veterans Affairs Cooperative Study Group. Effect of carotid endarterectomy for asymptomatic carotid stenosis. New England Journal of Medicine, 1993, 328:221-227
[4] Li Q, Lagakos S. Use of the Wei-Lin-Weissfeld method for the analysis of a recurring and a terminating event. Statistics in Medicine, 1997, 16:925-940
[5] Andersen P K, Gill R D. Cox's regression model for counting processes:a large sample study. Annals of Statistics, 1982, 10:1100-1120
[6] Pepe M S, Cai J. Some graphical displays and marginal regression analyses for recurrent failure times and time dependent covariates. Journal of the American Statistical Association, 1993, 88:811-820
[7] Lawless J F, Nadeau C. Some simple robust methods for the analysis of recurrent events. Technometrics, 1995, 37:158-168
[8] Lin D Y, Wei L J, Yang I, Ying Z. Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, Series B, 2000, 62:711-730
[9] Cook R J, Lawless J F. The Statistical Analysis of Recurrent Events. New York:Springer, 2007
[10] Ghosh D, Lin D Y. Nonparametric analysis of recurrent events and death. Biometrics, 2000, 56:554-562
[11] Ghosh D, Lin D Y. Marginal regression models for recurrent and terminal events. Statistica Sinica, 2002, 12:663-688
[12] Cook R J, Lawless J F. Marginal analysis of recurrent events and a terminating event. Statistics in Medicine, 1997, 16:911-924
[13] Schaubel D E, Cai J. Analysis of clustered recurrent event data with application to hospitalization rates among renal failure patients. Biostatistics, 2005, 6:404-419
[14] Ye Y, Kalbfleisch J D, Schaubel D E. Semiparametric analysis of correlated recurrent and terminal events. Biometrics, 2007, 63:78-87
[15] Kalbfleisch J D, Schaubel D E, Ye Y, Gong Q. An estimating function approach to the analysis of recurrent and terminal events. Biometrics, 2013, 69:366-374
[16] Huang C Y, Wang M C. Joint modeling and estimation for recurrent event processes and failure time data. Journal of the American Statistical Association, 2004, 99:1153-1165
[17] Zeng D, Lin D. Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events. Biometrics, 2009, 65:746-752
[18] Zhao X, Zhou J, Sun L. Semiparametric transformation models with time-varying coefficients for recurrent and terminal events. Biometrics, 2011, 67:404-414
[19] Dong L, Sun L. A flexible semiparametric transformation model for recurrent event data. Lifetime Data Analysis, 2015, 21:20-41
[20] Schaubel D E, Zhang M. Estimating treatment effects on the marginal recurrent event mean in the presence of a terminating event. Lifetime Data Analysis, 2010, 16:451-477
[21] Pan Q, Schaubel D E. Flexible estimation of differences in treatment-specific recurrent event means in the presence of a terminating event. Biometrics, 2009, 65:753-761
[22] Sun X W, Sun L Q. Semiparametric estimation of differences in treatment-specific recurrent event means with a terminal event. Statistics and Its Interface, 2019, 12:1-9
[23] Cox D R. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B, 1972, 34:187-200
[24] Pollard D. Empirical Processes:Theory and Applications. Institute of Mathematical Statistics, Hayward, California, 1990
[25] van der Vaart A W, Wellner J A. Weak Convergence and Empirical Processes. New York:Springer, 1996

[1]杜彦斌, 戴家佳, 金君. 复发事件下一类加性乘性转移模型[J]. 应用数学学报, 2018, 41(5): 642-652.
[2]曹学锋, 曲连强. 带信息终止事件的复发事件数据的联合建模分析[J]. 应用数学学报, 2017, 40(4): 530-542.
[3]郦博文, 张海祥. 多类型复发事件数据下一类Box-Cox转移模型[J]. 应用数学学报, 2016, 39(5): 656-668.
[4]戴家佳, 关楷谕, 吴欢. 带有终止事件的复发事件数据的加性加速比率模型[J]. 应用数学学报, 2015, 38(4): 735-750.
[5]马燕, 裴艳波, 张海祥. 多类型的复发事件数据下一类混合模型[J]. 应用数学学报, 2015, 38(4): 660-672.
[6]何穗, 程希明, 周洁. 带终止事件的多类型复发事件的一般加性乘积比例模型[J]. 应用数学学报(英文版), 2012, 35(5): 804-816.
[7]何穗, 王芬. 成组复发事件下的半参数变换模型[J]. 应用数学学报(英文版), 2012, (4): 728-736.
[8]何穗, 王芬, 刘焕彬. 成组复发事件下的一般半参数加性乘积比率回归模型[J]. 应用数学学报(英文版), 2010, 33(3): 412-423.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14831
相关话题/应用数学 比例 数据 统计 事件