摘要利用长度偏差数据所特有的辅助信息,对带右删失的长度偏差数据的分位数差提出了一种新的非参数估计.该方法提高了估计的有效性,所得的估计量形式简洁,便于计算.同时,本文用经验过程理论建立了该分位数差估计的相合性及渐近正态性,并给出方差估计的重抽样方法.本文还通过数值模拟考察了该估计量在有限样本下的表现,并将其应用到一个关于老年痴呆的实际数据中. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-04-17 | | 基金资助:国家自然科学重大研究计划重点项目(91546202);国家自然科学基金委重点项目(71331006);国家自然科学基金(11401603);中央高校基本科研业务经费(QL18009);中央财经大学学科建设经费(CUFESAM201811)
| 通讯作者:潘婧E-mail: panjing1233@163.com | 作者简介: 刘玉涛,E-mail:ytliu@cufe.edu.cn;周勇,E-mail:yzhou@amss.ac.cn |
[1] Asgharian M., M'Lan C. E., Wolfson D. B., Length-biased sampling with right censoring, Journal of the American Statistical Association, 2002, 97(457):201-209. [2] Asgharian M., Wolfson D. B., Asymptotoic behavior of the unconditional NPMLE of the length-biased survivor function from right censored prevalent cohort data, The Annals of Statistics, 2005, 33(5):2109-2131. [3] Asgharian M., Wolfson D. B., Zhang X., Checking stationarity of the incidence rate using prevalent cohort survival data, Statistics in Medicine, 2006, 25(10):1751-1767. [4] Chen X. P., Shi J. H., Zhou Y., Monotone rank estimation of transformation models with length-biased and right-censored data, Science in China:Mathematics, 2015, 58(10):1-14. [5] De Uña-álvarez J., Nonparametric estimation under length-biased sampling and type I censoring:a moment based approach, Annals of the Institute of Statistical Mathematics, 2004, 56(4):667-681. [6] Efron B., Tibshirani R., Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Statistical Science, 1986, 1(1):54-77. [7] Huang C. Y., Qin J. Nonparametric estimation for length-biased and right-censored data, Biometrika, 2011, 98(1):177-186. [8] Huang C. Y., Qin J., Composite partial likelihood estimation under length-biased sampling, with application to a prevalent cohort study of dementia, Journal of the American Statistical Association, 2012, 107(499):946-957. [9] Hyde J., Survival Analysis with Incomplete Observations, In Miller R. G., Jr., Efron B., Brown B. W., Jr., Moses L. E. (Eds.), Biostatistics Casebook, Wiley, New York, 1980:31-46. [10] Kaplan E. L., Meier P., Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 1958, 53(282):457-481. [11] Kopczuk W., Saez E., Song J., Earnings inequality and mobility in the United States:evidence from social security data since 1937, The Quarterly Journal of Economics, 2010, 125(1):91-128. [12] Kvam P., Length bias in the measurements of carbon nanotubes, Technometrics, 2008, 50(4):462-467. [13] Li Y., Ma H., Wang D., et al., Analyzing the general biased data by additive risk model, Science China:Mathematics, 2017, 60(4):685-700. [14] Lin C., Zhou Y., Analyzing right-censored and length-biased data with varying-coefficient transformation model, Journal of Multivariate Analysis, 2014, 130:45-63. [15] Liu P., Wang Y., Zhou Y., Quantile residual lifetime with right-censored and length-biased data, Annals of the Institute of Statistical Mathematics, 2015, 67(5):999-1028. [16] Ma H. J., Fan C. Y., Zhou Y., Estimating equation methods for quantile regression with length-biased and right censored data (in Chinese), Science China:Mathematics, 2015, 45(12):1981-2000. [17] Ning J., Qin J., Shen Y., Buckley-James type estimator with right-censored and length-biased data, Biometrics, 2015, 67(4):1369-1378. [18] Pakes A., Pollard D., Simulation and the asymptotics of optimization estimators, Econometrica, 1989, 57(5):1027-1057. [19] Reiss R. D., Approximation Distribution of Order Statistics, Springer-Verlag, New York, 1989. [20] Shen Y., Ning J., Qin J., Analyzing length-biased data with semiparametric transformation and accelerated failure time models, Journal of the American Statistical Association, 2009, 104(487):1192-1202. [21] Tsai W. Y., Jewell N. P., Wang M. C., A note on the product-limit estimator under right censoring and left truncation, Biometrika, 1987, 74(4):883-886. [22] Vardi Y., Multiplicative censoring, renewal processes, deconvolution and decreasing density:nonparametric estimation, Biometrika, 1989, 76(4):751-761. [23] Veraverbeke N., Estimation of the quantiles of the duration of old age, Journal of Statistical Planning and Inference, 2001, 98(1-2):101-106. [24] Wang M., Nonparametric estimation from cross-sectional survival data, Journal of the American Statistical Association, 1991, 86(413):130-143. [25] Wang Y., Liu P., Zhou Y., Quantile residual lifetime for left-truncated and right-censored data, Science China:Mathematics, 2015, 58(6):1217-1234. [26] Wang Y., Zhou Z., Zhou X., et al., Nonparametric and semiparametric estimation of quantile residual lifetime for length-biased and right-censored data, The Canadian Journal of Statistics, 2017, 45(2):220-250. [27] Xun L., Shao L., Zhou Y., Efficiency of estimators for quantile differences with left truncated and right censored data, Statistics and Probability Letters, 2017, 121:29-36. [28] Xun L., Zhou Y., Estimators and their asymptotic properties for quantile difference with left truncated and right censored data, Acta Math. Sin., Chin. Ser., 2017, 60(3):451-464. [29] Zelen M., Forward and backward recurrence times and length biased sampling:Age specific models, Lifetime Data Analysis, 2005, 10(4):325-334. [30] Zeng D., Lin D. Y., Efficient resampling methods for nonsmooth estimating function, Biostatistics, 2008, 9(2):355-363. [31] Zhou W., Jing B., Smoothed empirical likelihood confidence intervals for the difference of quantiles, Statistica Sinica, 2003, 13(1):83-95.
|
[1] | 厉诚博, 胡淑兰, 周勇. 长度偏差右删失数据下[1mm]比例均值剩余寿命模型的估计方法[J]. 数学学报, 2018, 61(5): 865-880. | [2] | 舒鑫鑫, 张莉, 周勇. 随机缺失数据下样本分位数估计[J]. 数学学报, 2017, 60(5): 865-882. | [3] | 荀立, 周勇. 左截断右删失数据分位差估计及其渐近性质[J]. 数学学报, 2017, 60(3): 451-464. | [4] | 孙六全;周勇. 左截断右删失下乘积限过程的振动模的强极限定理[J]. Acta Mathematica Sinica, English Series, 1998, 41(5): -. | [5] | 周勇. 两种相依样本经验过程增量的收敛速度及其在光滑估计中的应用[J]. Acta Mathematica Sinica, English Series, 1997, 40(4): -. | [6] | 陈夏. B-值随机元及经验过程的 Kolmogorov 重对数律[J]. Acta Mathematica Sinica, English Series, 1993, 36(5): 600-619. | [7] | 洪圣岩. 截尾情形下随机窗宽核密度估计[J]. Acta Mathematica Sinica, English Series, 1992, 35(5): 710-718. | [8] | 张健;成平. PP Kolmogorov-Smirnov统计量其分布尾部的大样本上界[J]. Acta Mathematica Sinica, English Series, 1991, 34(3): 388-402. | [9] | 施锡铨. Hodges-Lehmann位置估计的bootstrap逼近[J]. Acta Mathematica Sinica, English Series, 1987, 30(6): 721-728. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23571
基于病例队列数据的比例风险模型的诊断余吉昌,曹永秀中南财经政法大学统计与数学学院武汉430073ModelDiagnosticsfortheProportionalHazardsModelwithCase-CohortDataJiChangYU,YongXiuCAOSchoolofStatistic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27长度偏差右删失数据剩余寿命的分位数回归孙桂萍1,2,厉诚博3,周勇4,51上海财经大学统计与管理学院上海200433;2枣庄学院数学与统计学院枣庄277100;3东北财经大学统计学院大连116025;4华东师范大学经管学部统计交叉科学研究院上海200062;5中国科学院数学与系统科学研究院北京100 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非时齐马氏过程的Liggett-Stroock不等式宋娟1,张铭21.湖北经济学院信息管理与统计学院湖北金融发展与金融安全研究中心武汉430205;2.中国政法大学科学技术教学部北京102249Liggett-StroockInequalitiesforTimeInhomogeneousMarkov ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27超高维II型区间删失数据的非参数变量筛选法张婧1,靳韶佳2,陈丹丹21.中南财经政法大学统计与数学学院,武汉430073;2.武汉大学数学与统计学院,武汉430072NonparametricFeatureScreeningforUltrahigh-dimensionalCaseIIInterval ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分组数据分位数回归模型的变量选择和估计刘栋1,杨冬梅2,何勇3,张新生41.上海财经大学统计与管理学院,上海200433;2.山东财经大学统计学院,济南250014;3.山东大学中泰证券金融研究院,济南250100;4.复旦大学管理学院,上海200433VariableSelectionandEst ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于样本次序统计量的总体分位数的非参数统计推断赵旭,程维虎北京工业大学理学部,北京100124Non-parametricStatisticalInferenceforthePopulationQuantilesBasedonOrderStatisticsofSamplesZHAOXu,CHENGW ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27针对面板数据的半参数变系数可加模型的估计和推断崔晓静上海财经大学统计与管理学院,上海200433EstimationandInferenceofaSemiparametricVarying-coefficientAdditiveModelforPanelDataCUIXiaojingSchoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27偏正态数据下混合非线性位置回归模型的统计诊断曹幸运,聂兴锋,吴刘仓昆明理工大学理学院,昆明650093StatisticalDiagnosisofMixtureNonlinearLocationRegressionModelwithSkew-NormalDataCAOXingyun,NIEXingf ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有舍入误差微观结构噪音高频数据的杠杆效应分析蔺富明1,2,周勇31.上海财经大学统计与管理学院,上海,200433;2.四川轻化工大学数学与统计学院,自贡,643000;3.统计与数据科学前沿理论及应用教育部重点实验室华东师范大学统计交叉科学研究院,上海,200062AnalysisofLever ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27随机环境中两性分枝过程的矩收敛准则李应求,肖胜,彭朝晖长沙理工大学数学与统计学院,长沙410004MomentConvergenceCriteriaforBisexualBranchingProcessesinRandomEnvironmentsLIYingqiu,XIAOSheng,PENGZha ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|