删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

K-g-框架及其对偶

本站小编 Free考研考试/2021-12-27

K-g-框架及其对偶 戴春年, 冷劲松, 何苗电子科技大学数学科学学院 成都 611731 K-g-frames and Their Duality Chun Nian DAI, Jin Song LENG, Miao HESchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(476 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要探讨K-g-框架及其对偶.首先讨论K-g-框架和g-框架的关系,然后给出一些充分条件,使得在此条件下K-g-框架与g-Bessel序列经过有界线性算子或非零复有界序列作用后的和仍然是K-g-框架.此外,又给出K-g-框架求和的两种特殊形式.最后,研究K-g-框架在闭子空间RK)上的对偶,以及利用近似对偶构建K-g-框架的方法.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-04-01
MR (2010):O177.1
基金资助:成都电子科技大学理科实力提升与拓展计划项目(Y0301902610100202)
引用本文:
戴春年, 冷劲松, 何苗. K-g-框架及其对偶[J]. 数学学报, 2021, 64(2): 243-254. Chun Nian DAI, Jin Song LENG, Miao HE. K-g-frames and Their Duality. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 243-254.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I2/243


[1] Christensen O., An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser, Bostan, 2003.
[2] Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, Journal of Mathematical Physics, 1986, 27(5):1271-1283.
[3] Ding M. L., Xiao X. C., Zeng X. M., Tight K-frames in Hilbert spaces, Acta Mathematica Sinica, Chinese Series, 2013, 56(1):105-112.
[4] Douglas R. G., On majorization, factorization and range inclusion of operators on Hilbert space, Proceedings of the American Mathematical Society, 1996, 17(2):413-415.
[5] Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Transactions of the American Mathematical Society, 1952, 72(2):341-366.
[6] Eldar Y. C., Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, Journal of Fourier Analysis and Application, 2003, 9(1):77-96.
[7] Gavruta L., Frames for operators, Applied and Computational Harmonic Analysis, 2012, 32:139-144.
[8] Guo X. X., Canonical dual K-Bessel sequences and dual K-Bessel generators for unitary of Hilbert spaces, Journal of Mathematics Analysis and Application, 2016, 444(1):598-609.
[9] Jia M., Zhu Y. C., Some results about the operator perturbation of a K-frame, Results in Mathematics, 2018, 73:138.
[10] Leng J. S., Han D. G., Huang T., Probability modelled optimal frames forerasures, Linear Algebra and Its Applications, 2013, 438(11):4222-4236.
[11] Li D. W., Leng J. S., Huang T. Z., et al., On sum and stability of g-frames in Hilbert spaces, Linear and Multilinear Algebra, 2018, 66(8):1578-1592.
[12] Li J. Z., Zhu Y., Exact g-frames in Hilbert spaces, Journal of Mathematical Analysis and Applications, 2013, 374(1):201-209.
[13] Neyshaburi F. A., Arefijamaal A. A., Some constructions of K-frames and their duals, Rocky Mountain Journal of Mathematics, 2017, 47(6):1749-1764.
[14] Obeidat S., Samarah S., Casazza P., et al., Sums of Hilbert space frames, Journal of Mathematical Analysis and Applications, 2009, 351(2):579-585.
[15] Ramu G., Johnson P. S., Frame operators of K-frames, SEMA J., 2016, 73:171-181.
[16] Sun W. C., G-frames and g-Riesz bases, Journal of Mathematical Analysis and Application, 2006, 322(1):437-452.
[17] Sun W. C., Stability of g-frames, Journal of Mathematical Analysis and Application, 2007, 326(2):858-868.
[18] Tsiligianni E. V., Kondi L. P., Katsaggelos A. K., Construction of incoherent unit norm tight frames with application to compressed sensing, IEEE Transaction on Information Theory, 2014, 60(4):2319-2330.
[19] Xiao X. C., Zhu Y. C., Gavruta L., Some properties of K-frames in Hilbert spaces, Results in Mathematics, 2013, 63(3-4):1243-1255.
[20] Xiao X. C., Zhu Y. C., Exact K-g-Frames in Hilbert spaces, Results in Mathematics, 2017, 72:1329-1339.
[21] Xiao X. C., Zhu Y. C., Shu Z. B., et al., G-frames with bounded linear operators, Rocky Mountain Journal of Mathematics, 2015, 45(2):675-693.
[22] Xiang Z. Q., Canonical dual K-g-Bessel sequences and K-g-frame sequences, Results in Mathematics, 2018, 73:17.
[23] Zhou Y., Zhu Y. C., K-g-Frames and Dual g-frames for closed Subspaces, Acta Mathematica Sinica, Chinese Series, 2013, 56(5):709-806.
[24] Zhou Y., Zhu Y. C., Characterization of K-g-frames in Hilbert spaces, Acta Mathematica Sinica, Chinese Series, 2014, 57(5):1031-1040.
[25] Zhu Y. C., Characterizations of g-frames and g-riesz Bases in Hilbert spaces, Acta Mathematica Sinica, English Series, 2018, 24(10):1727-1736.

[1]钟德光, 孟凡宁, 袁文俊. 非齐次多重调和方程拟共形映射的一个Schwarz-Pick型不等式[J]. 数学学报, 2021, 64(3): 413-426.
[2]徐小玲, 张佳凡. 经典高斯和及它们的一些递推性质[J]. 数学学报, 2021, 64(3): 479-484.
[3]刘华宁, 李柯瑶. 基于有限域中的二次特征生成的伪随机二进制格点[J]. 数学学报, 2021, 64(1): 145-150.
[4]王智刚, 黄心中, 刘志宏, Rahim KARGAR. 与星象函数有关的拟共形近于凸调和映射[J]. 数学学报, 2020, 63(6): 565-576.
[5]陈少林. 与双调和方程相关的连续模和Heinz-Schwarz型不等式[J]. 数学学报, 2020, 63(5): 505-522.
[6]祁兰, 陈卓钰. 多项式的特征和与二项指数和的混合均值[J]. 数学学报, 2020, 63(4): 397-402.
[7]刘馨予, 陈卓钰. 一类四项指数和的四次均值[J]. 数学学报, 2020, 63(3): 261-270.
[8]曹茹月, 方程成, 曹炜. p-adic 超几何函数与 Dwork超曲面上的有理点[J]. 数学学报, 2020, 63(3): 253-260.
[9]何圆. Hardy和Littlewood的一个三角和[J]. 数学学报, 2020, 63(3): 271-280.
[10]张佳凡, 吕星星. 多项式的特征和及其L-函数[J]. 数学学报, 2019, 62(6): 903-912.
[11]罗未, 宋传宁, 许庆祥. Hilbert C*-模上可共轭算子的并联和[J]. 数学学报, 2019, 62(4): 541-552.
[12]王婷婷, 关雅靓. 一个与Dedekind和相关的新和式及其在特殊点的值[J]. 数学学报, 2019, 62(3): 497-502.
[13]王啸. 二项指数和四次均值的一个注记[J]. 数学学报, 2019, 62(2): 261-268.
[14]白海荣, 廖群英. Smarandache函数的几类相关方程的解[J]. 数学学报, 2019, 62(2): 247-254.
[15]吕星星. 三次Gauss和及二项指数和的混合均值[J]. 数学学报, 2019, 62(2): 225-232.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23714
相关话题/数学 电子科技大学 序列 学报 理科