删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

高斯域上理想计数函数在短区间上的Erdös-Kac型定理

本站小编 Free考研考试/2021-12-27

高斯域上理想计数函数在短区间上的Erdös-Kac型定理 刘晓莉, 杨志善青岛大学数学与统计学院 青岛 266071 Erdös–Kac Type Theorem for Ideal Counting Function over Gaussian Field in Short Intervals Xiao Li LIU, Zhi Shan YANGSchool of Mathematics and Statistics, Qingdao University, Qingdao 266071, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(442 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要aKn)为Z[i]中范数为n的非零整理想个数, l ∈ Z+,本文给出了短区间上权为aKnl的Erdös-Kac型定理,并得到短区间上aKnl均值估计的渐近公式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-10-24
MR (2010):O156.4
通讯作者:杨志善E-mail: zsyang@qdu.edu.cn
作者简介: 刘晓莉,E-mail:15216509811@163.com
引用本文:
刘晓莉, 杨志善. 高斯域上理想计数函数在短区间上的Erdös-Kac型定理[J]. 数学学报, 2021, 64(1): 65-76. Xiao Li LIU, Zhi Shan YANG. Erdös–Kac Type Theorem for Ideal Counting Function over Gaussian Field in Short Intervals. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 65-76.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I1/65


[1] Chandrasekharan K., Narasimhan R., The approximate functional equation for a class of zeta-functions, Math. Ann., 1963, 152(1):30-64.
[2] Erdös P., Kac M., On the Gaussian law of errors in the theory of additive functions, P.N.A.S., 1939, 25(4):206-207.
[3] Huxley M. N., On the difference between consecutive primes, Invent. Math., 1971, 15(2):164-170.
[4] Landau E., Einführung in die Elementare umd Analytische Theorie der Algebraischen Zahlen und der Ideals, Chelsea Publishing Company, New York, 1949.
[5] Lü G. S., Wang Y. H., Note on the number of integral ideals in Galois extensions, Science China Mathematics, 2010, 53(9):2417-2424.
[6] Lü G. S., Yang Z. S., The average behavior of the coefficients of the Dedekind zeta function over square numbers, J. Number Theory, 2011, 131(10):1924-1938.
[7] Nowak W. G., On the distribution of integer ideals in algebraic number fields, Math. Nachr., 1993, 161(1):59-74.
[8] Tenenbaum G., Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995.
[9] Wu J., Wu Q., Mean values for a class of arithmetic functions in short intervals, Math. Nachr., 2020, 293:178-202.
[10] Zhai W. G., Asymptotics for a class of arithmetic functions, Acta Arith., 2015, 170(2):135-160.

[1]王晓瑛, 曹艳梅. 短区间的并集中整数及其m次幂的差的均值分布[J]. 数学学报, 2018, 61(6): 943-950.
[2]张熠然. 对包含整数的最小素因子和的估计[J]. Acta Mathematica Sinica, English Series, 1999, 42(6): 997-999.
[3]陈景润;王天泽. 关于奇数Goldbach问题[J]. Acta Mathematica Sinica, English Series, 1996, 39(2): -.
[4]曹晓东. 一般因子问题[J]. Acta Mathematica Sinica, English Series, 1993, 36(5): 644-653.
[5]张文鹏. 一类数论函数的均值估计[J]. Acta Mathematica Sinica, English Series, 1989, 32(2): 260-267.
[6]罗文智. 短区间的误差项的双线性形式[J]. Acta Mathematica Sinica, English Series, 1989, 32(1): 86-90.
[7]姚琦. 短区间中的哥德巴赫数的例外集[J]. Acta Mathematica Sinica, English Series, 1982, 25(3): 315-322.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23688
相关话题/数学 青岛大学 统计学院 区间 定理