删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

纯奇点范畴中的Buchweitz定理

本站小编 Free考研考试/2021-12-27

纯奇点范畴中的Buchweitz定理 曹天涯, 刘仲奎, 杨晓燕西北师范大学数学与统计学院 兰州 730070 Buchweitz Theorem in Pure Singularity Category Tian Ya CAO, Zhong Kui LIU, Xiao Yan YANGDepartment of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(436 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要我们定义纯奇点范畴DpsgbR)为有界纯导出范畴DpurbR)与纯投射模构成的有界同伦范畴KbPP)的Verdier商,得到了纯奇点范畴DpsgbR)三角等价于相对纯投射模的Gorenstein范畴的稳定范畴GPP)的一个充分必要条件.同时,还给出三角等价DpsgbR)≈DpsgbS)的充分条件,这里RS都是环.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-07-24
MR (2010):O154.2
基金资助:国家自然科学基金资助项目(11761060)
作者简介: 曹天涯,E-mail:caotianya1979@126.com;刘仲奎,E-mail:liuzk@nwnu.edu.cn;杨晓燕,E-mail:yangxy@nwnu.edu.cn
引用本文:
曹天涯, 刘仲奎, 杨晓燕. 纯奇点范畴中的Buchweitz定理[J]. 数学学报, 2019, 62(4): 553-560. Tian Ya CAO, Zhong Kui LIU, Xiao Yan YANG. Buchweitz Theorem in Pure Singularity Category. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 553-560.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/553


[1] Asadollahi J., Hafezi R., Vahed R., Gorenstein derived equivalences and their invariants, J. Pure Appl. Algebra, 2014, 218(5):888-903.
[2] Bao Y. H., Du X. N., Zhao Z. B., Gorenstein singularity categories, J. Algebra, 2015, 428:122-137.
[3] Buchweitz R. O., Matrix Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Hamburg, 1987, 155 pp., unpublished manuscript.
[4] Chen W. J., Liu Z. K., Yang X. Y., Singularity categories with respect to Ding projective modules, Acta Math. Sinica, 2017, 33:793-806.
[5] Chen X. W., Relative singularity categories and Gorenstein projective modules, Math. Nachr, 2011, 284:199-212.
[6] Enochs E. E., Jenda O. M. G., López-Ramos J. A., Covers and envelopes by V -Gorenstein modules, Comm. Algebra, 2005, 33:4705-4717.
[7] Huang Z. Y., Proper resolutions and Gorenstein categories, J. Algebra, 2013, 393:142-169.
[8] Kong F., Zhang P., From CM-finite to CM-free, J. Pure Appl. Algebra, 2016, 220:782-801.
[9] Li H. H., Huang Z. Y., Relative singularity categories, J. Pure Appl. Algebra, 2015, 219:4090-4104.
[10] Orlov D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 2004, 246:227-248.
[11] Rickard J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 1989, 61:303-317.
[12] Sather-Wagstaff S., Sharif T., White D., Stability of Gorenstein categories, J. Lond. Math. Soc., 2008, 77:481-502.
[13] Verdier J. L., Des Catégories Dérivées Abéliennes, Asterisque, 1996, 239:xii+253 pp.
[14] Zheng Y. F., Huang Z. Y., On pure derived categories, J. Algebra, 2016, 454:252-272.
[15] Zhang P., Triangulated Category and Derived Category (in Chinese), Science Press, Beijing, 2015.
[16] Zhu S. J., Left Homotopy Theory and Buchweitz's Theorem, Master Thesis at Shanghai Jiaotong Universty, Shanghai, 2011.

[1]万前红, 郑立景, 郭晋云. 斜群代数与平凡扩张的表示维数[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 463-468.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23447
相关话题/数学 代数 统计学院 西北师范大学 范畴