删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Gorenstein正则环、奇点范畴和Ding模

本站小编 Free考研考试/2021-12-27

Gorenstein正则环、奇点范畴和Ding模 汪军鹏1, 狄振兴21. 西北师范大学经济学院 兰州 730070;
2. 西北师范大学数学与统计学院 兰州 730070 Gorenstein Regular Rings, Singularity Categories and Ding Modules Jun Peng WANG1, Zhen Xing DI21. Department of Economics, Northwest Normal University, Lanzhou 730070, P. R. China;
2. Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(581 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文证明了任意环的整体 Ding 投射维数和整体Ding 内射维数一致, 研究了奇点范畴和相对于 Ding模的稳定范畴间的关系, 并刻画了 Gorenstein(正则)环以及环的整体维数的有限性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-09-03
MR (2010):O154.2
基金资助:国家自然科学基金资助项目(11601433);中国博士后自然科学基金资助项目(2106M602945XB)
作者简介: 汪军鹏,E-mail:wangjunpeng1218@163.com;狄振兴,E-mail:dizhenxing19841111@163.com
引用本文:
汪军鹏, 狄振兴. Gorenstein正则环、奇点范畴和Ding模[J]. 数学学报, 2019, 62(2): 331-344. Jun Peng WANG, Zhen Xing DI. Gorenstein Regular Rings, Singularity Categories and Ding Modules. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 331-344.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/331


[1] Bao Y. H., Du X. N., Zhao Z. B., Gorenstein singularity categories, J. Algebra, 2015, 428: 122–137.
[2] Beligiannis A., The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co)stabilization, Comm. Algebra, 2000, 28: 4547–4596.
[3] Bennis D., Hu K., Wang F. G., Gorenstein analogue of Auslander's theorem on the global dimension, Comm. Algebra, 2015, 43: 174–181.
[4] Bennis D., Mahdou N., Global Gorenstein dimensions, Proc. Amer. Math., 2010, 138: 461–465.
[5] Buchweitz R. O., Maximal cohen-macaulay modules and Tate cohomology over Gorenstein rings, 1987, unpublished manuscript, 155pp. Available at https://tspace.library.utoronto.ca/handle/1807/16682.
[6] Chen X. W., Homotopy equivalences induced by balanced pairs, J. Algebra, 2010, 324: 2718–2731.
[7] Ding N. Q., Li Y. L., Mao L. X., Strongly Gorenstein flat modules, J. Aust. Math. Soc., 2009, 86: 323–338.
[8] Emmanouil I., On the finiteness of Gorenstein homological dimensions, J. Algebra, 2012, 372: 376–396.
[9] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220: 611–633.
[10] Enochs E. E., Cortés-Izurdiaga M., Torrecillas B., Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra, 2014, 218: 1544–1554.
[11] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter and Co., Berlin, 2000.
[12] Gillespie J., Model Structures on Modules over Ding–Chen rings, Homotopy Homology Appl., 2010, 12: 61–73.
[13] Happel D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series Vol. 119, Cambridge University Press, Cambridge, 1988.
[14] Happel D., On Gorenstein Algebras, Progress in Mathematics, Birkh Auser Verlag, Basel, 1991, Vol. 95, 389–404.
[15] Holm H., Gorenstein Homological Algebra, PhD thesis, University of Copenhagen, Denmark, 2004.
[16] Holm H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 2004, 189: 167–193.
[17] Iwanage Y., On rings with finite self-injective dimension, Comm. Algebra, 1979, 7: 393–414.
[18] Lam T. Y., Lectures on modules and rings, Springer Science & Business Media, 2012.
[19] Mao L. X., Ding N. Q., Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl., 2008, 4: 497–506.
[20] Orlov D., Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., 2004, 246: 227–248.
[21] Rickard J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 1989, 61: 303–317.
[22] Wang Z. P., Liu Z. K., Strongly Gorenstein flat dimensions of complexes, Comm. Algebra, 2016, 44: 1390– 1410.
[23] Yang C. H., Strongly Gorenstein flat and Gorenstein FP-injective modules, Turkish J. Math., 2013, 37: 218–230.
[24] Yang G., Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc., 2012, 49: 31–47.
[25] Yang G., Liu Z. K., Liang L., Ding projective and Ding injective modules, Algebra Colloq., 2013, 20: 601–612.
[26] Zhang C. X., Liu Z. K., Rings with finite Ding homological dimensions, Turk. J. Math., 2015, 39: 37–48.
[27] Zhang P., Triangulated Categories and Derived Categories (in Chinese), Science Press, Beijing, 2015.

[1]郭述锋. 相对整体维数有限的扩张[J]. 数学学报, 2019, 62(2): 191-200.
[2]毛雪峰, 何继位. 一类特殊的Koszul Calabi-Yau DG代数[J]. 数学学报, 2017, 60(3): 475-504.
[3]张海诚. m-循环复形范畴的Bridgeland--Hall代数的余代数结构[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 881-896.
[4]万前红, 郑立景, 郭晋云. 斜群代数与平凡扩张的表示维数[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 463-468.
[5]罗秀花, 居腾霞, 吴美云. rep(A3, I, A)中的Gorenstein投射模[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 115-124.
[6]李宜阳, 舒斌, 姚裕丰. sl(3, k)正则幂零表示投射模的Lowey序列[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 981-992.
[7]周俊超, 徐运阁, 陈媛. 一类自入射Koszul特殊双列代数的Hochschild同调群[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 627-640.
[8]曾月迪, 陈建龙. 内射余分解类与投射分解类[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 41-54.
[9]林增强, 王敏雄. 模范畴Recollement的Koenig定理[J]. Acta Mathematica Sinica, English Series, 2011, 54(3): 461-466.
[10]李兆晖, 徐运阁, 汪任. 一个自入射Koszul代数的Hochschild同调与循环同调[J]. 数学学报, 2018, 61(1): 97-106.
[11]任伟. 奇点模型范畴的Quillen等价[J]. 数学学报, 2019, 62(3): 521-528.
[12]毛雪峰, 谢建峰. 同调光滑连通上链DG代数的一个注记[J]. 数学学报, 2018, 61(5): 715-728.
[13]徐运阁, 赵体伟, 吴迪. 一个Cluster-Tilted代数的Hochschild上同调环[J]. 数学学报, 2016, 59(4): 505-518.
[14]梁力, 杨刚. 复形的#-内射包络的存在性[J]. 数学学报, 2019, 62(3): 391-396.
[15]张东东, 朱海燕, 胡江胜. Gorenstein范畴上的一个问题[J]. 数学学报, 2019, 62(1): 151-156.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23382
相关话题/数学 代数 西北师范大学 结构 博士后