删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

涉及移动目标的亚纯映射唯一性定理

本站小编 Free考研考试/2021-12-27

涉及移动目标的亚纯映射唯一性定理 刘志学, 张庆彩中国人民大学数学学院 北京 100872 Uniqueness Theorem on Meromorphic Mappings with Few Moving Targets Zhi Xue LIU, Qing Cai ZHANGSchool of Mathematics, Renmin University of China, Beijing 100872, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(561 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文首先证明了一个新的从Cn到PN(C)的亚纯映射第二基本定理,其中涉及到带有不同权重的截断型计算函数;其次利用这个新的第二基本定理,考虑了退化的亚纯映射在分担处于一般位置的移动超平面下的唯一性问题,并在较弱的条件下获得了一个唯一性结果,改进了已有的一些经典结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-05-29
MR (2010):O174.56
基金资助:国家留学基金资助项目(201806360222)
通讯作者:张庆彩E-mail: zhangqcrd@163.com
作者简介: 刘志学,E-mail:zxliumath@163.com
引用本文:
刘志学, 张庆彩. 涉及移动目标的亚纯映射唯一性定理[J]. 数学学报, 2019, 62(5): 783-794. Zhi Xue LIU, Qing Cai ZHANG. Uniqueness Theorem on Meromorphic Mappings with Few Moving Targets. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 783-794.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I5/783


[1] Cao H. Z., Algebraical dependence and uniqueness problem for meromorphic mappings with few moving targets, Bull. Malays. Math. Sci. Soc., 2018, 41(2):837-853.
[2] Cao T. B., Yi H. X., Uniqueness theorems for meromorphic mappings sharing hyperplanes in general position (in Chinese), Sci. Sin. Math., 2011, 41:135-144.
[3] Chen Z. H., Yan Q. M., Uniqueness theorem of meromorphic mappings into PN (C) sharing 2N+3 hyperplanes regardless of multiplicities, Intern. J. Math., 2009, 20(6):717-726.
[4] Fujimoto H., The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 1975, 58:1-23.
[5] Giang H. H., Uniqueness theorem for meromorphic mappings with multiple values, Kodai Math. J., 2018, 41(1):115-124.
[6] Liu Z. X., Zhang Q. C., Difference uniqueness theorems on meromorphic functions in several variables, Turk. J. Math., 2018, 42(5):2481-2505.
[7] Lü F., The uniqueness problem for meromorphic mappings with truncated multiplicities, Kodai Math. J., 2012, 35(3):485-499.
[8] Nevanlinna R., Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math., 1926, 48(3):367-391.
[9] Quang S. D., Second main theorems with weighted counting functions and algebraic dependence of meromorphic mappings, Proc. Amer. Math. Soc., 2016, 144(10):4329-4340.
[10] Quang S. D., Second main theorems for meromorphic mappings intersecting moving hyperplanes with truncated counting functions and unicity problem, Abh. Math. Semin. Univ. Hamburg, 2016, 86(1):1-18.
[11] Quang S. D., Second main theorems for meromorphic mappings and moving hyperplanes with truncated counting functions, Oroc. Amer. Math. Soc., 2019, 147(4):1657-1669.
[12] Ru M., Nevanlinna theory and Its Relation to Diophantine Approximation, World Scientific, River Edge, NJ, 2001.
[13] Smiley L., Geometric conditions for unicity of holomorphic curves, Contemp. Math., 1983, 25:149-154.

[1]王壮壮, 曾小雨. 一类p-Kirchhoff方程基态解的存在性与唯一性[J]. 数学学报, 2019, 62(6): 879-888.
[2]蔡钢. Triebel—Lizorkin空间上二阶有限时滞退化微分方程的适定性[J]. 数学学报, 2018, 61(5): 741-750.
[3]林伟川, 林培强. L-函数的唯一性[J]. 数学学报, 2018, 61(4): 601-608.
[4]葛照强. 广义分布半群与退化发展方程的分布解[J]. 数学学报, 2018, 61(1): 79-88.
[5]林跃峰. I-hedrite图平面嵌入的唯一性[J]. 数学学报, 2017, 60(6): 919-930.
[6]薛晓琳, 刘存明. 拟线性双曲型方程组Cauchy问题行波解的稳定性[J]. 数学学报, 2016, 59(6): 745-760.
[7]徐家发, 董卫. 分数阶p-Laplacian边值问题正解的存在唯一性[J]. 数学学报, 2016, 59(3): 385-396.
[8]刘慧芳, 毛志强. 整函数与其差分算子的唯一性定理[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 825-832.
[9]胡业新. 一类拟线性椭圆型方程边值问题的稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1181-1190.
[10]胡盛清, 王硕. 五体问题的中心构型及其相对平衡解[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1199-1202.
[11]彭定涛, 俞建, 修乃华. 几类非线性问题解的通有唯一性[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 373-386.
[12]杨婉蓉. 3D轴对称Boussinesq方程强解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 637-650.
[13]刘存明, 刘见礼. 一阶拟线性双曲型方程组Goursat问题的整体经典解[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 145-154.
[14]周军. 一类具有局部化源和吸收项的抛物系统解的整体存在与爆破[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 67-86.
[15]张杰. Brück猜想的一类微分和差分方程[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 61-66.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23497
相关话题/数学 留学 北京 计算 系统