删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

次线性期望下的一般中心极限定理

本站小编 Free考研考试/2021-12-27

次线性期望下的一般中心极限定理 兰玉婷1, 张宁21. 上海财经大学统计与管理学院 上海 200433;
2. 山东大学数学学院 济南 250100 General Central Limit Theorems Under Sublinear Expectations Yu Ting LAN1, Ning ZHANG21. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, P. R. China;
2. School of Mathematics, Shandong University, Jinan 250100, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(588 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要受Peng-中心极限定理的启发,本文主要应用G-正态分布的概念,放宽Peng-中心极限定理的条件,在次线性期望下得到形式更为一般的中心极限定理.首先,将均值条件E[Xn]=E[Xn]=0放宽为|E[Xn]|+|E[Xn]|=O(1/n);其次,应用随机变量截断的方法,放宽随机变量的2阶矩与2+δ阶矩条件;最后,将该定理的Peng-独立性条件进行放宽,得到卷积独立随机变量的中心极限定理.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-11-03
MR (2010):O211.4
基金资助:国家自然科学基金资助项目(11601280);上海财经大学中央高校基本科研业务费专项资金(2017110072)
通讯作者:张宁E-mail: neil_sdu@163.com
作者简介: 兰玉婷,E-mail:lan.yuting@mail.shufe.edu.cn
引用本文:
兰玉婷, 张宁. 次线性期望下的一般中心极限定理[J]. 数学学报, 2019, 62(4): 591-604. Yu Ting LAN, Ning ZHANG. General Central Limit Theorems Under Sublinear Expectations. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 591-604.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/591


[1] Chareka P., The central limit theorem for capacities, Statistics and Probability Letters, 2009, 79(12):1456- 1462.
[2] Chen Z., Chen T., Davison M., Choquet expectation and Peng's g-expectation, The Annals of Probability, 2005, 33(3):1179-1199.
[3] Chen Z. Epstein L., Ambiguity, risk and asset returns in continuous time, Econometrica, 2002, 70(4):1403- 1443.
[4] Chen Z., Hu F., A law of the iterated logarithm under sublinear expectations, Journal of Financial Engineering, 2014, 1:1450015.
[5] Choquet G., Theory of capacities, Annales de I'institut Fourier, 1954, 5:131-295.
[6] Coquet F., Hu Y., Mémin J., et al., Filtration-consistent nonlinear expectations and related g-expectations, Probability Theory and Related Fields, 2002, 123(1):1-27.
[7] Epstein L., Seo K., A central limit theorem for belief functions, 2011, in preparation.
[8] Hu F., Zhang D., Central limit theorem for capacities, Comptes Rendus Mathematique, 2010, 348(19/20):1111-1114.
[9] Li M., Shi Y., A general central limit theorem under sublinear expectations, Science China Mathematics, 2010, 53(8):1989-1994.
[10] Peng S., G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô Type, Stochastic Analysis and Applications, Springer, Berlin, 2007:541-567.
[11] Peng S., Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion, preprint, arXiv:1002.4546, 2010.
[12] Schmeidler D., Subjective probability and expected utility without additivity, Econometrica, 1989, 57:571- 587.
[13] Terán P., Counterexamples to a central limit theorem and a weak law of large numbers for capacities, Statistics and Probability Letters, 2015, 96:185-189.
[14] Wakker P., Testing and characterizing properties of nonadditive measures through violations of the sure-thing principle, Econometrica, 2001, 69(4):1039-1059.
[15] Wang L., On the regularity theory of fully nonlinear parabolic equations I, Communications on Pure and Applied Mathematics, 1992, 45(1):27-76.
[16] Wang L., On the regularity theory of fully nonlinear parabolic equations Ⅱ, Communications on Pure and Applied Mathematics, 1992, 45(2):141-178.
[17] Wu P., Chen Z., Invariance principles for the law of the iterated logarithm under G-framework, Science in China-Mathematics, 2015, 58(6):1251-1264.
[18] Zhang D., Chen Z., A weighted central limit theorem under sublinear expectations, Communications in Statistics-Theory and Methods, 2014, 43(3):566-577.
[19] Zhang N., Lan Y., A comparison theorem under sublinear expectations and related limit theorems, arXiv:1710.01624math.PR, 2017.
[20] Zong G., Research about non-linear expectation and related questions (in Chinese), Dissertation for Doctoral Degree, 2015:40-43.

[1]刘立新;程士宏;. 具有不同分布NA随机变量列的强大数律及应用[J]. Acta Mathematica Sinica, English Series, 2008, 51(2): 275-280.
[2]马宇韬; 宋琼霞. 马氏过程Lipschitz可加泛函的中[J]. Acta Mathematica Sinica, English Series, 2007, 50(1): 33-42.
[3]董志山;杨小云. NA及LNQD随机变量列的几乎处处中心极限定理[J]. Acta Mathematica Sinica, English Series, 2004, 47(3): 593-600.
[4]朱赋鎏. 非紧致一秩Riemann对称空间上的中心极限定理[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 481-490.
[5]林正炎. 学生化U-统计量的中心极限定理[J]. Acta Mathematica Sinica, English Series, 1998, 41(5): -.
[6]许冰. 随机截尾数据回归函数估计的重对数律[J]. Acta Mathematica Sinica, English Series, 1991, 34(6): 807-817.
[7]杨小云;李竹香. ‖S_n‖超越ε(nlgn)~(1/2)的次数、最大程度和最后时刻的矩的讨论[J]. Acta Mathematica Sinica, English Series, 1991, 34(4): 440-450.
[8]洪圣岩. 近邻型密度估计的重对数律[J]. Acta Mathematica Sinica, English Series, 1990, 33(1): 96-106.
[9]肖益民. 关于随机勒襄特级数的一些性质[J]. Acta Mathematica Sinica, English Series, 1989, 32(2): 145-153.
[10]邵启满. 一矩不等式及其应用[J]. Acta Mathematica Sinica, English Series, 1988, 31(6): 736-747.
[11]朱力行. 线性模型中最小二乘估计的强收敛速度问题[J]. Acta Mathematica Sinica, English Series, 1988, 31(5): 651-659.
[12]于浩. 相伴随机变量的重对数律[J]. Acta Mathematica Sinica, English Series, 1986, 29(4): 507-511.
[13]缪柏其. 线性模型误差方差估计中心极限定理余项的非一致估计[J]. Acta Mathematica Sinica, English Series, 1984, 27(6): 834-843.
[14]林正炎. 关于 U-统计量渐近展式的注[J]. Acta Mathematica Sinica, English Series, 1984, 27(5): 595-598.
[15]赵林城. 线性模型中误差方差学生氏估计量依分布收敛的速度[J]. Acta Mathematica Sinica, English Series, 1984, 27(3): 381-393.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23450
相关话题/统计 上海财经大学 上海 管理学院 中央