删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

涉及导数与差分的亚纯函数的小函数的收敛指数与级

本站小编 Free考研考试/2021-12-27

涉及导数与差分的亚纯函数的小函数的收敛指数与级 王品玲1, 杨世伟2, 方明亮21 上海立信会计金融学院统计与数学学院 上海 201620;
2 华南农业大学应用数学研究所 广州 510642 The Exponents and Order of Convergence of Small Functions of Meromorphic Functions Concerning Derivatives and Differences Pin Ling WANG1, Shi Wei YANG2, Ming Liang FANG21 School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 210620, P. R. China;
2 Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(371 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要fz)是一个复平面上的亚纯函数,c是一个非零有穷复数,az)是fz)的一个小函数,本文研究fz)- az),fz+c)- az)及Δcn fz)- az)(n ∈ N+)的零点收敛指数与fz)的级之间的关系.由此改进了涉及导数与差分的亚纯函数值分布的一些相关结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-24
MR (2010):O174.52
基金资助:国家自然科学基金资助项目(11701188,11901119)
作者简介: 王品玲,E-mail:wangpinling@lixin.edu.cn;杨世伟,E-mail:yangseawell@foxmail.com;方明亮,E-mail:mlfang@scau.edu.cn
引用本文:
王品玲, 杨世伟, 方明亮. 涉及导数与差分的亚纯函数的小函数的收敛指数与级[J]. 数学学报, 2021, 64(1): 77-86. Pin Ling WANG, Shi Wei YANG, Ming Liang FANG. The Exponents and Order of Convergence of Small Functions of Meromorphic Functions Concerning Derivatives and Differences. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 77-86.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I1/77


[1] Bergweiler W., Langley J. K., Zeros of differences of meromorphic functions, Math. Proc. Camb. Phil. Soc., 2007, 142:133-147.
[2] Chen Z. X., Fixed points of meromorphic functions and their differences, shifts, Ann. Polon. Math., 2013, 109(2):153-163.
[3] Chen Z. X., Complex Differences and Difference Equations, Mathematics Monograph Series, Vol. 29, Science Press, Beijing, 2014.
[4] Chen Z. X., Shon K. H., On zeros and fixed points of differences of meromorphic functions, J. Math. Anal. Appl., 2008, 344:373-383.
[5] Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z +η) and difference equations in the complex plane, Ramanujan J., 2008, 16:105-129.
[6] Chiang Y. M., Feng S. J., On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 2009, 361:3767-3791.
[7] Halburd R. G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314:477-487.
[8] Halburd R. G., Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31:463-478.
[9] Halburd R. G., Korhonen R. J., Tohge, Kazuya Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc., 2014, 366(8):4267-4298.
[10] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[11] Laine I., Yang C. C., Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 2007, 76(3):556-566.
[12] Lan S. T., Chen Z. X., On fixed points of meromorphic functions f(z) and f(z + c), Δcf(z), Acta Math. Sci. Ser. B Engl. Ed., 2019, 39(5):1277-1289.
[13] Yang L., Value Distribution Theory, Springer-Verlag, Berlin,1993.
[14] Yang P., Liao L. W., Chen, Q. Y., Value distribution of the derivatives of entire functions with multiple zeros, Bull. Malays. Math. Sci. Soc., 2020, 43(3):2045-2063.
[15] Yi H. X., Yang C. C., Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[16] Zhang J., Liao L. W., Entire functions sharing some values with their difference operators, Sci. China Math., 2014, 57(10):2143-2152.
[17] Zhang R. R., Chen Z. X., Fixed points of meromorphic functions and of their differences, divided differences and shifts, Acta Math. Sin. Engl. Ser., 2016, 32(10):1189-1202.
[18] Zhang R. R., Chen Z. X., Value distribution of difference polynomials of meromorphic functions (in Chinese), Sci. Sin. Math., 2012, 42(11):1115-1130.

[1]杨刘, 庞学诚. 多复变Pang-Zalcman引理及应用[J]. 数学学报, 2020, 63(6): 577-586.
[2]王品玲, 方明亮. 涉及导数与差分的亚纯函数唯一性[J]. 数学学报, 2020, 63(2): 171-180.
[3]张美娟, 周珂. 带形上近临界随机游动的常返暂留性[J]. 数学学报, 2019, 62(5): 737-744.
[4]邓炳茂, 曾翠萍, 刘丹, 方明亮. 涉及导数与差分分担值的唯一性问题[J]. 数学学报, 2019, 62(5): 709-720.
[5]梁霄, Harish BHATT. 时空分数阶薛定谔方程的指数时间差分方法[J]. 数学学报, 2019, 62(4): 663-672.
[6]苏敏, 李玉华. 开平面C上的亚纯函数与完备极小曲面的Gauss映射[J]. 数学学报, 2019, 62(3): 515-520.
[7]曾翠萍, 邓炳茂, 方明亮. 复微分-差分方程组的整函数解[J]. 数学学报, 2019, 62(1): 123-136.
[8]金建军, 唐树安. 解析Morrey域的若干刻画[J]. 数学学报, 2019, 62(1): 167-176.
[9]高凌云, 刘曼莉. 一些差分—复合函数方程的亚纯解[J]. 数学学报, 2018, 61(5): 705-714.
[10]曾翠萍, 邓炳茂, 方明亮. 分担函数集的正规定则[J]. 数学学报, 2018, 61(4): 569-576.
[11]王钥. 复高阶微分方程的解[J]. 数学学报, 2017, 60(4): 651-660.
[12]陈创鑫, 陈宗煊. 亚纯函数及其差分的唯一性[J]. 数学学报, 2016, 59(6): 821-834.
[13]高凌云. 两类复微分-差分方程组的整函数解[J]. 数学学报, 2016, 59(5): 677-684.
[14]高凌云. 一类复差分方程组的亚纯解[J]. 数学学报, 2016, 59(3): 363-368.
[15]王品玲, 刘丹, 方明亮. 亚纯函数差分的亏量与值分布[J]. 数学学报, 2016, 59(3): 357-362.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23689
相关话题/数学 学报 广州 分数 研究所