删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多复变Pang-Zalcman引理及应用

本站小编 Free考研考试/2021-12-27

多复变Pang-Zalcman引理及应用 杨刘1, 庞学诚21 安徽工业大学数理科学与工程学院 马鞍山 243032;
2 华东师范大学数学科学学院 上海 200241 Pang-Zalcman Lemma of Several Complex Variables and Its Applications Liu YANG1, Xue Cheng PANG21 School of Mathematics and Physics, Anhui University of Technology, Maanshan 243032, P. R. China;
2 Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(454 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要单复变中的Pang-Zalcman引理是研究亚纯函数正规族问题的重要工具.本文将该引理推广至多复变全纯函数的情形.作为应用建立了多复变全纯函数族的正规定则,改进和推广了相关结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-08-14
MR (2010):O174.5
基金资助:国家自然科学基金资助项目(11701006,11871216);安徽省自然科学基金资助项目(1808085QA02)
作者简介: 杨刘,E-mail:yangliu6@ahut.edu.cn;庞学诚,E-mail:xcpang@math.ecnu.edu.cn
引用本文:
杨刘, 庞学诚. 多复变Pang-Zalcman引理及应用[J]. 数学学报, 2020, 63(6): 577-586. Liu YANG, Xue Cheng PANG. Pang-Zalcman Lemma of Several Complex Variables and Its Applications. Acta Mathematica Sinica, Chinese Series, 2020, 63(6): 577-586.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I6/577


[1] Aladro G., Krantz S. G., A criterion for normality in Cn, J. Math. Anal. Appl., 1991, 161:1-8.
[2] Alexander H., Volumes of images of varieties in projective space and in Grassmannians, Trans. Amer. Math. Soc., 1974, 189:237-237.
[3] Bergweiler W., Bloch's Principle, Computational Methods & Function Theory, 2006, 6(1):77-108.
[4] Chen H. H., Gu Y. X., An improvement of Marty's criterion and its applications, Sci. China Ser. A, 1993, 36:674-681.
[5] Dovbush P. V., On a normality criterion of Mandelbrojt, Complex Var. Elliptic Equ., 2014, 59(10):1388-1394.
[6] Dovbush P. V., Zalcman's lemma in Cn, Complex Var. Elliptic Equ., 2020, 65(5):796-800.
[7] Grahl J., Nevo S., Spherical derivatives and normal families, J. Anal. Math, 2012, 117(1):119-128.
[8] Gu Y. X., Pang X. C., Fang M. L., Normal Family Theory and Its Application, Scinece Press, Beijing, 2007.
[9] Gul S., Nevo S., Creating limit functions by the Pang-Zalcman lemma, Kodai Math. J., 2012, 35(10):283-310.
[10] Li S. Y., Xie H. C., On normal families of meromorphic functions. Acta Math. Sinica, Chin. Series 1986, 29(4):468-476.
[11] Nevo S., Applications of Zalcman's lemma to Qm-normal families, Analysis, 2001, 21:289-325.
[12] Pang X. C., Bloch's principle and normal criterion, Science in China, Ser. A, 1989, 32(7):782-791.
[13] Pang X. C., On normal criterion of meromorphic functions, Science in China, Ser. A, 1990, 33(5):521-527.
[14] Pang X. C., Zalcman L., Normal families and shared values, Bull. London Math. Soc., 2000, 32:325-331.
[15] Schwick W., Normality criteria for families of meromorphic functions, J. Analyse Math., 1989, 52:241-289.
[16] Schiff J. L., Normal Families, Universitext, Springer, New York, 1993.
[17] Shi J. H., Function Theory of Several Complex Variables, Higher Education Press, Beijing, 1996.
[18] Steinmetz N., Nevanlinna Theory, Normal Families, and Algebraic Differential Equations, Springer, New York, 2017.
[19] Zalcman L., A heuristic principle in complex function theory, Amer. Math. Monthly, 1975, 82(8):813-818.
[20] Zalcman L., Normal families:new perspectives, Bull. Amer. Math. Soc., 1998, 35:215-230.
[21] Zhang S. S., Tu Z. H., Normal families of holomorphic mappings of several complex variables into P1(C) Acta Math. Sinica, Chin. Series, 2010, 53(6):1045-1050.

[1]黄小杰, 刘芝秀. Zalcman引理在随机迭代函数族动力系统中的应用[J]. 数学学报, 2020, 63(5): 531-536.
[2]曾翠萍, 邓炳茂, 方明亮. 分担函数集的正规定则[J]. 数学学报, 2018, 61(4): 569-576.
[3]仇惠玲, 方彩云, 方明亮. 涉及例外函数与分担函数的正规族[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 345-352.
[4]刘晓毅, 程春暖. 正规族与分担函数[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 941-950.
[5]王品玲, 刘丹, 方明亮. 分担值与具有重零点的亚纯函数正规族[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 343-352.
[6]刘晓毅, 常建明. 分担集合的亚纯函数正规族[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 1049-1056.
[7]徐焱, 常建明. 正规定则与重值[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 265-270.
[8]张莎莎, 涂振汉. 多复变全纯函数族正规准则[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1045-1050.
[9]吕锋, 徐俊峰, 仪洪勋. 全纯函数的正规族[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 963-974.
[10]陈俊凡. 与例外函数和分担函数相关的亚纯函数的正规族[J]. Acta Mathematica Sinica, English Series, 2010, 53(4): 655-662.
[11]张庆德;秦春艳;. 亚纯函数的正规族与分担值[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 145-152.
[12]刘晓俊;庞学诚;. 分担值与正规族[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 409-412.
[13]林伟川;杨连中. 函数与其导数具有公共值的全纯函数族的正规性[J]. Acta Mathematica Sinica, English Series, 2003, 46(3): 539-544.
[14]黄小军;顾永兴. 与分担值相关的正规族[J]. Acta Mathematica Sinica, English Series, 2002, 45(5): 925-928.
[15]王淑贵;伍胜健. 亚纯函数的不动点与拟正规族[J]. Acta Mathematica Sinica, English Series, 2002, 45(3): 545-550.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23667
相关话题/数学 函数 上海 数理 科学