摘要利用小波方法在局部Hölder空间中研究一类反卷积密度函数的点态估计问题.首先,针对超级光滑噪声给出该模型任一估计器的点态风险下界;其次,构造有限求和小波估计器,并证明其在超级光滑噪声条件下达到了最优收敛阶,即该估计器在点态风险下的收敛速度与下界一致.最后,还讨论了这类小波估计器的强收敛性.值得指出的是上述估计都是自适应的. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-10-29 | | 基金资助:国家自然科学基金(11771030);北京市自然科学基金(1172001);北京市博士后工作经费(ZZ2019-77);北京工业大学基础研究基金(006000546319511,006000546319528)
| 通讯作者:曾晓晨E-mail: zengxiaochen@bjut.edu.cn | 作者简介: 吴聪,E-mail:wuc@emails.bjut.edu.cn;王晋茹,E-mail:wangjinru@bjut.edu.cn |
[1] Carroll R. J., Hall P., Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., 1988, 83(404):1184-1186. [2] Comte F., Lacour C., Anisotropic adaptive kernel deconvolution, Ann. Inst. H. Poincaré Probab. Statist., 2013, 49(2):569-609. [3] Devore R., Kerkyacharian G., Picard D., et al., Approximation methods for supervised learning, Found. Comput. Math., 2006, 6(1):3-58. [4] Devroye L., Lugosi G., Combinatorial Methods in Density Estimation, Springer, New York, 2001. [5] Donoho D. L., Unconditional bases are optimal bases for data compression and for statistical estimation, Appl. Comput. Harmon. Anal., 1993, 1(1):100-115. [6] Donoho D. L., Johnstone I. M., Kerkyacharian G., et al., Wavelet Shrinkage:Asymptopia? J. Roy. Statist. Soc. Ser. B, 1995, 57(2):301-369. [7] Donoho D. L., Johnstone I. M., Kerkyacharian G., et al., Density estimation by wavelet thresholding, Ann. Statist, 1996, 24(2):508-539. [8] Efromovich S., Nonparametric Curve Estimation:Methods, Theory and Applications, Springer-Verlag, New York, 1999. [9] Fan J., On the optimal rate of convergence for nonparametric deconvolution problems, Ann. Statist., 1991, 19(3):1257-1272. [10] Fan J., Koo J., Wavelet deconvolution, IEEE Trans. Inform. Theory, 2002, 48(3):734-747. [11] Härdle W., Kerkyacharian G., Picard D., et al., Wavelets, Approximation and Statistical Applications, Springer-Verlag, New York, 1998. [12] Hu L., Zeng X. C., Wang J. R., Wavelet optimal estimations for a two-dimensional continuous-discrete density function over Lp risk, J. Inequal. Appl., 2018, 2018:279, 20 pp. [13] Li Q., Racine J. S., Nonparametric Econometrics:Theory and Practice, Princeton, Princeton University Press, 2007. [14] Li R., Liu Y. M., Wavelet optimal estimations for a density with some additive noises, Appl. Comput. Harmon. Anal., 2014, 36(3):416-433. [15] Liu Y. M., Xu J. L., On the Lp-consistency of wavelet estimators, Acta Math. Sin. Engl. Ser., 2016, 32(7):765-782. [16] Liu Y. M., Zeng X. C., Strong Lp convergence of wavelet deconvolution density estimators, Anal. Appl. Singap, 2018, 16(2):183-208. [17] Liu Y. M., Zeng X. C., Asymptotic normality of wavelet deconvolution density estimators, Appl. Comput. Harmon. Anal., 2018, DOI:10.1016/j.acha.2018.05.006. [18] Lounici K., Nickl R., Global uniform risk bounds for wavelet deconvolution estimators, Ann. Statist, 2011, 39(1):201-231. [19] Meister A., Deconvolution Problems in Nonparametric Statistics, Springer-Verlag, Berlin, 2009. [20] Pensky M., Vidakovic B., Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist, 1999, 27(6):2033-2053. [21] Stefanski L., Carrol R. J., Deconvoluting kernel density estimators, Statistics, 1990, 21(2):169-184. [22] Tsybakov A. B., Introduction to Nonparametric Estimation, Springer, New York, 2009. [23] Walnut David F., An Introduction to Wavelet Analysis, Birkhäuser, Boston, 2004. [24] Walter G. G., Density estimation in the presence of noise, Statist. Probab. Lett., 1999, 41:237-246. [25] Zeng X. C., A note on wavelet deconvolution density estimation, Int. J. Wavelets Multiresolut. Inf. Process, 2017, 15(6):1750055, 12 pp. [26] Zeng X. C., Wang J. R., Wavelet density deconvolution estimations with heteroscedastic measurement errors, Statist. Probab. Lett., 2018, 134:79-85.
|
[1] | 张岩, 李云章. 单个生成元Walsh p-进制平移不变空间伸缩的交与并[J]. 数学学报, 2019, 62(1): 1-12. | [2] | 黄永东. 具有特殊伸缩矩阵的Parseval框架小波集的结构[J]. 数学学报, 2016, 59(2): 163-186. | [3] | 吴国昌, 田新现, 李登峰. 对称-反对称复合伸缩多小波的构造[J]. Acta Mathematica Sinica, English Series, 2011, 54(5): 731-738. | [4] | 黄永东, 孙娜. A-Parseval框架小波的特征刻画[J]. Acta Mathematica Sinica, English Series, 2011, 54(5): 767-790. | [5] | 余国林. 方向导数和广义锥-预不变凸集值优化问题[J]. Acta Mathematica Sinica, English Series, 2011, 54(5): 875-880. | [6] | 潘雅丽. 高维Riesz多小波基[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1097-1109. | [7] | 李尤发, 杨守志. 仿酉对称矩阵的构造及对称正交多小波滤波带的参数化[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 279-290. | [8] | 廉巧芳;李云章;. 一类高维FMRA小波标架[J]. Acta Mathematica Sinica, English Series, 2009, (05): 23-30. | [9] | 胡宏昌;. 长相依半参数回归模型的小波估计[J]. Acta Mathematica Sinica, English Series, 2009, (04): 19-28. | [10] | 全宏跃;王国秋;. 多进紧支对称小波尺度函数构造及性质[J]. Acta Mathematica Sinica, English Series, 2009, (04): 129-140. | [11] | 杨占英杨奇祥. 卷积型Calder\'{o}n-Zygmund算子的新算法[J]. 数学学报, 2008, 51(6): 1061-107. | [12] | 程俊芳李登峰. $E$-紧框架小波来自MRA的特征刻画[J]. Acta Mathematica Sinica, English Series, 2008, 51(5): 877-888. | [13] | 邓彩霞;曲玉玲;侯杰;. Gauss小波变换像空间的描述[J]. Acta Mathematica Sinica, English Series, 2008, 51(2): 225-234. | [14] | 张之华;. 一对拟双正交框架小波[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 81-90. | [15] | 杨奇祥;. 象征算子的紧算子逼近算法和逼近速度[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 999-100. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23489
渐近Teichmller空间的不唯一性黄志勇,周泽民中国人民大学数学系北京100872NonuniquenessPropertiesonAsymptoticTeichmullerSpaceZhiYongHUANG,ZeMinZHOUDepartmentofMathematics,Renm ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法蔡钢重庆师范大学数学科学学院重庆401331ViscosityIterativeAlgorithmsforaNewVariationalInequalityProblemandFixedPointProbleminHilbertSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多复变中正规权Zygmund空间上的几个性质黎深莲,张学军湖南师范大学数学与统计学院长沙410006SeveralPropertiesontheNormalWeightZygmundSpaceinSeveralComplexVariablesShenLianLI,XueJunZHANGCollege ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Fock空间上的Hankel算子王晓峰1,夏锦1,陈建军21.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2.肇庆学院数学与统计学院肇庆526061HankelOperatorsonGeneralizedFockSpacesXiaoFengWANG1,JinXIA1,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27类拟b-距离空间中几类循环压缩映射不动点定理司马傲蕾,贺飞,路宁内蒙古大学数学科学学院呼和浩特010021FixedPointTheoremsforSeveralCyclic-ContractiveMappingsinDislocatedQuasi-b-metricSpacesAoLeiSIMA,F ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27型C-Z算子在加权变指数Morrey空间上的有界性杨沿奇,陶双平西北师范大学数学与统计学院兰州730070Boundednessof-typeC-ZOperatorsonWeightedVariableExponentMorreySpacesYanQiYANG,Shuan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Minkowski空间的等价性定理及在Finsler几何的应用李明重庆理工大学理学院重庆400054OnEquivalenceTheoremsofMinkowskiSpacesandApplicationsinFinslerGeometryMingLISchoolofScience,Chongqin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Morrey空间上Marcinkiewicz积分与R陶双平,逯光辉西北师范大学数学与统计学院兰州730070CommutatorsofMarcinkiewiczIntegralswithRBMO()onMorreySpacesShuangPingTAO,GuangHuiLUCollegeof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|