删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Smarandache函数的几类相关方程的解

本站小编 Free考研考试/2021-12-27

Smarandache函数的几类相关方程的解 白海荣, 廖群英四川师范大学数学与软件科学学院 成都 610066 On the Solutions for Several Classes of Equations Related to the Smarandache Function Hai Rong BAI, Qun Ying LIAOInstitute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(425 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要φn),Sn)分别表示正整数n的Euler函数和Smarandache函数,利用初等的方法和技巧,依据Smarandache函数计算公式,给出k的方程φpαm)=Spαk)的所有解,其中p为素数,αm为正整数且gcd(m,p)=1,由此得到方程φn)=Snk)的所有解(n,k).进而确定了满足条件Sn)|σn)的全部正整数n.最后,根据莫比乌斯变换反演定理证明了方程φn)=Σd|n Sd)仅有两个解,分别为n=25n=3×25.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-07-23
MR (2010):O156.1
基金资助:国家自然科学基金资助项目(11401408);四川省科技厅资助项目(2016JY0134)
通讯作者:廖群英,E-mail:qunyingliao@sicnu.edu.cn
作者简介: 白海荣,E-mail:baihairong2007@163.com
引用本文:
白海荣, 廖群英. Smarandache函数的几类相关方程的解[J]. 数学学报, 2019, 62(2): 247-254. Hai Rong BAI, Qun Ying LIAO. On the Solutions for Several Classes of Equations Related to the Smarandache Function. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 247-254.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/247


[1] Bai H. R., Liao Q. Y., Some generalizations of Smarandache function, J. Sichuan Normal Univ., 2018, 41(1): 32–38.
[2] Chen B., An equation involving Smarandache function and the Euler function, J. Southwest Univ., 2012, 34: 70–73.
[3] Farris M., Mitshell P., Bounding the Smarandache function, Smarandache Notions Journal, 2002, 13: 37–42.
[4] Gorski D., The Pseudo-smarandache Function, Smarandache Notions Journal, 2002, 13(1–3): 140–149.
[5] Kashihara K., Comments and Topics on Smarandache Notions and Problems, New Mexica Erhus University Press, ??, 1996.
[6] Le M. H., A lower bound for (2p-1(2p-1)), Smarandache Notions Journal, 2001, 12(1): 217–218.
[7] Liao Q. Y., Luo W. L., The explicit formula for the Smarandache function and solutions of the related equations, J. Sichuan Normal Univ., 2017, 40: 1–10.
[8] Liu Y. M., On the solutions of an equation involving the Smarandache function, Scientia Magna, 2006, 2(1): 76–79.
[9] Smarandache F., Only Problems, Not Solution, Xiquan Publishing House, Chicago, 1993.
[10] Wen T. D., A lower bound estimate of the Smarandache function (in Chinese), Pure and Applied Mathematics, 2010, 26(3): 413–416.
[11] Xu Z. F., the value distribution of Smarandache function (in Chinese), Acta Mathematica Sinaca, 2006, 49(5): 1009–1012.
[12] Xing W. Y., On the Smarandache function, Research on Smarandache Problem in Number Theory, 2005, 2: 103–106.
[13] Yi Y., An equation involving the Euler function and Smarandache function, Scientia Magna, 2005, 1(2): 172–175.
[14] Zhang W. P., On two problems of the Smarandache function, Journal of Northwest University, 2008, 38(2): 173–176.

[1]马金萍;刘宝利;. 一个包含Smarandache函数的方程[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1185-119.
[2]徐哲峰;. Smarandache函数的值分布性质[J]. Acta Mathematica Sinica, English Series, 2006, 49(5): 1009-101.
[3]龚升;郑学安;余其煌. 多复变数的Schwarz导数(Ⅴ)[J]. Acta Mathematica Sinica, English Series, 1999, 42(2): -.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23373
相关话题/数学 四川师范大学 软件 科学学院 函数