删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

新变参MQ拟插值函数的性质及其逼近性能研究

本站小编 Free考研考试/2021-12-27

新变参MQ拟插值函数的性质及其逼近性能研究 杜珊, 李风军宁夏大学数学统计学院, 银川 750021 Study on the Properties and Approximation Capability of Multi-Quadric Quasi-Interpolation Function with a New Variable Shape Parameter DU Shan, LI FengjunSchool of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(464 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要借助多重二次曲面(Multi-Quadric,MQ)拟插值函数的优点,提出了一种新的变参数MQ拟插值法,得出了该拟插值法也具有常参MQ拟插值法的线性再生性、保单调性和保凸性,分析了现有的两类变参MQ拟插值法中参数选取的不适定性,给出了误差估计的理论结果并通过数值算例与常参MQ拟插值法及现有的两类变参MQ拟插值法进行了比较.结果表明本文构造的变参MQ拟插值法的精度更高,参数选取更合理.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-05-19
PACS:O29
基金资助:国家自然科学基金(61662060),宁夏自然科学基金(NZ17011,2019AAC03037)资助项目.

引用本文:
杜珊, 李风军. 新变参MQ拟插值函数的性质及其逼近性能研究[J]. 应用数学学报, 2019, 42(5): 655-669. DU Shan, LI Fengjun. Study on the Properties and Approximation Capability of Multi-Quadric Quasi-Interpolation Function with a New Variable Shape Parameter. Acta Mathematicae Applicatae Sinica, 2019, 42(5): 655-669.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I5/655


[1] Hardy R L. Multi-Quadric equations of topography and other irregular surfaces. Geophys Res., 1971, 76(8):1905-1915
[2] Gao Q J, Wu Z M, Zhang S G. Applying multi-quadric quasi-interpolation for boundary detection. Comput. Math. Appl., 2011, 62(12):4356-4361
[3] Duan Y, Rong F. A numerical scheme for nonlinear Schrodinger equation by MQ quasi-interpolation. Engineering Analysis with Boundary Elements, 2013, 37(1):89-94
[4] Wu Z M, Zhang S G. Conservative multi-quadric quasi-interpolation method for Hamiltonian wave equations. Engineering Analysis with Boundary Elements, 2013, 37(7):1052-1058
[5] Wu R F, Wu T R, Li H L. A family of multi-quadric quasi-interpolation operators with higher degree polynomial reproduction. J. Comput. Appl. Math., 2015, 274:88-108
[6] Franke R. Scattered data interpolation text of some methods. Appl. Math. Comput., 1982, 38(38):181-200
[7] Beatson R K, Powell M J D. Univariate multi-quadric approximation quasi-interpolation to scattered data. Construc. Approx., 1992, 8(3):275-288
[8] Leevan L. A univariate quasi-multiquadric interpolation with better smoothness. J. Comput. Appl. Math., 2004, 48(5):897-912
[9] Chen R H, Wu Z M. Applying multi-quadric quasi-interpolation to solve Burger equation. Appl Math. Comput., 2006, 172(1):472-484
[10] Feng R Z, Zhou X. A kind of multi-quadric quasi-interpolation operator satisfying any degree polynomial reproduction property to scattered data. J. Comput. Appl. Math., 2011, 235(5):1502-1514
[11] Wu Z M, Schaback R. Shape preserving properties and convergence of unvirate multiquadric quasi-interpolation. Acta Math Appl. Sinica, 1994, 10(4):441-446
[12] Ma L M, Wu Z M. Approximation to the k-th derivatives by multi-quadric quasi- interpolation method. Appl. Math. Comput., 2009, 231(2):925-932
[13] Wang R H, Xu M. A kind of Bernoulli-type quasi-interpolation operator with univariate multi-quadrics. Comput. Appl. Math., 2010, 29(1):47-60
[14] Jiang Z W, Wang R H. Numerical solution of one-dimensional Sine-Gordon equation using high accuracy multi-quadric quasi-interpolation. Appl. Math. Comput., 2012, 218(15):7711-7716
[15] Gao F, Chi C M. Numerical solution of nonlinear Burger'equations using high accuracy multi-quadric quasi-interpolation. Appl Math. Comput., 2014, 229:414-421
[16] Gao W W, Wu Z M. Solving time-dependent differential equations by multi-quadric trigonometric quasi-interpolation. Appl. Math. Comput., 2015, 253(C):377-386
[17] 王自强, 曹俊英. 空间分数阶扩散方程的Multi-quadric拟插值解法. 厦门大学学报:自然科学版, 2015, 54(3):358-363 (Wang Z Q, Cao J Y. Multi-quadric quasi-interpolation for space fractional diffusion equations. J. Xiamen University (Natural Science), 2015, 54(3):358-363)
[18] Wu H Y, Duan Y. Multi-Quadric quasi-interpolation method coupled with FDM for the Degasperis-Procesi equation. Appl. Math. Comput., 2016, 274:8-92
[19] Kansa E J, Carlson R. Improved accuracy of multi-quadric interpolation using variable shape parameters. Comput. Math. Appl., 1992, 24(12):99-120
[20] Scotta A S, Derek S. A random variable shape parameter strategy for radial basis function approximation methods. Engineering Analysis with Boundary Elements, 2009, 33(11):1239-1245
[21] 吴宗敏. 散乱数据拟合的模型、方法和理论. 北京:科学出版社, 2007 (Wu Z M. Scattered Data Fitting Model, Method and Theory. Beijing:Science Press, 2007)
[22] 荣峰. 径向基函数拟插值及其在计算电磁学中的应用. 成都:电子科技大学, 2012 (Rong F. Quasi-interpolation of radial basis function and its application in computational electromagnetics. Chengdu:University of Electronic Science and Technology of China, 2012)

[1]樊明智, 王芬玲, 赵艳敏, 史艳华, 张亚东. 时间分数阶扩散方程双线性元的高精度分析[J]. 应用数学学报, 2019, 42(4): 535-549.
[2]李永明, 周勇. 基于右删失宽相依数据的Kaplan-Meier估计和风险率估计的渐近性质[J]. 应用数学学报, 2019, 42(1): 71-84.
[3]朱震, 赵月旭. I.I.D.序列最大部分和的精确渐近性[J]. 应用数学学报, 2018, 41(6): 822-831.
[4]周海林, 王娅, 叶建兵, 刘大瑾, 谭沈阳. 求解矩阵方程组A1XB1+C1XD1=E1, A2XB2+C2XD2=E2的迭代算法[J]. 应用数学学报, 2018, 41(5): 577-588.
[5]王廷春, 王国栋, 张雯, 何宁霞. 求解耗散Schrödinger方程的一个无条件收敛的线性化紧致差分格式[J]. 应用数学学报, 2017, 40(1): 1-15.
[6]周海林. 线性子空间上求解矩阵方程AXB+CXD=F的迭代算法[J]. 应用数学学报, 2016, 39(4): 610-619.
[7]谷敏强, 刘智斌, 程贞敏. 基于双蕴涵的相似推理模型[J]. 应用数学学报, 2015, 38(3): 477-495.
[8]郑敏玲. 空间分数阶扩散方程的谱及拟谱方法[J]. 应用数学学报, 2015, 38(3): 434-449.
[9]孙玉东, 师义民, 童红. 基于摄动理论的障碍期权定价[J]. 应用数学学报, 2015, 38(1): 67-79.
[10]宋淑红, 王双虎. 多介质大变形扩散问题的一种简单高精度算法[J]. 应用数学学报(英文版), 2014, 37(2): 367-378.
[11]石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析[J]. 应用数学学报(英文版), 2014, 37(1): 45-58.
[12]谢冬秀, 黄宁军, 张忠志. 对称广义中心对称半正定矩阵模型修正的矩阵逼近法及其应用[J]. 应用数学学报(英文版), 2013, 36(5): 803-812.
[13]陈英伟, 王志军, 王占京. Dirichlet函数类的Fejér算子逼近[J]. 应用数学学报(英文版), 2013, 36(2): 269-279.
[14]刘英. Banach空间中关于变分不等式组与严格伪压缩映射的粘滞逼近法[J]. 应用数学学报(英文版), 2013, 36(2): 324-336.
[15]王贵君, 李丹. 前向正则模糊神经网络依K-积分模的泛逼近能力[J]. 应用数学学报(英文版), 2013, (1): 141-152.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14657
相关话题/应用数学 空间 分数 数据 统计