删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带方向信息的薄板样条插值函数及其应用

本站小编 Free考研考试/2021-12-27

带方向信息的薄板样条插值函数及其应用 吴敏1, 郭田德2, 韩丛英21. 中国科学院大学数学科学学院, 北京 100049;
2. 中国科学院大学数学科学学院, 中国科学院大数据挖掘与知识管理重点实验室, 北京 100049 Thin Plate Spline Interpolation Function with Orientation Information and Its Application WU Min1, GUO Tiande2, Han Congying21. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. School of Mathematical Sciences, University of Chinese Academy of Sciences;Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100049, China
摘要
图/表
参考文献
相关文章(3)
点击分布统计
下载分布统计
-->

全文: PDF(1183 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要薄板样条(TPS)函数是一个很好的形变分析工具,常用于图像配准,传统的薄板样条函数只是利用特征点的坐标信息,而现实中很多特征点都带有方向信息,比如指纹细节点和sift特征点.为了在薄板样条函数中利用方向信息,本文在传统薄板样条目标函数基础上增加了方向平行惩罚项及方向一致性惩罚项,根据变分法的结论,目标函数的求解转换为求解一个微分方程,用格林函数法求解这个微分方程,从而得到带方向信息的薄板样条函数新形式.本文得到的薄板样条函数适合于任意维度的点集,在指纹图像配准和人造点集插值上的实验表明,和传统薄板样条函数相比,本文提出的薄板样条函数对于带方向信息的图像配准和点集插值更加准确.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-09-29
PACS:O212.7
基金资助:国家自然科学基金(11731013,11991022,U19B2040,11571014)和中央高校基本科研业务费专项资金资助项目.

引用本文:
吴敏, 郭田德, 韩丛英. 带方向信息的薄板样条插值函数及其应用[J]. 应用数学学报, 2021, 44(5): 659-677. WU Min, GUO Tiande, Han Congying. Thin Plate Spline Interpolation Function with Orientation Information and Its Application. Acta Mathematicae Applicatae Sinica, 2021, 44(5): 659-677.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I5/659


[1] 李庆扬, 王能超, 易大义. 数值分析. 北京:清华大学出版社, 2008(Li Q Y, Wang N C, Yi D Y. Numerical Analysis. Beijing:Tsinghua University Press, 2008)
[2] Bookstein F L. Principal warps:thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11:567-585
[3] Wahba G. Spline models for obserbational data. Philadelphia:Society for Industrial and Applied Mathematics, 1990
[4] Arad N, Dyn N, Resisdeld D, Yeshurun Y. Image warping by radial basis functions:Application to facial expressions. Graphical Models and Image Processing, 1994, 56(2):161-172
[5] Maltoni D, Maio D, Jain A K, Prabhakar S. Handbook of Fingerprint Recognition. Berlin:Springer Science and Business Media, 2009
[6] Lowe D G. Distinctive image features from scale-invariant key points. International Journal of Computer Vision, 2003, 20:91-110
[7] Bookstein F L, Green W D K. A feature space for edgels in images with landmarks. Journal of Mathematical Imaging and Vision, 1993, 3:231-261
[8] Mardia K V, Little J A. Image warping using derivative information. Proceedings of SPIE-The International Society for Optical Engineering, 1994, 16-31
[9] Rohr K, Fornefett M, Stiehl H S. Spline-based elastic image registration:integration of landmark errors and orientation attributes. Computer Vision and Image Understanding, 2003, 90(2):153-168
[10] Wu M, Han C Y, Guo T D, Zhao T. Registration and matching method for directed point set with orientation attributes and local information. Computer Vision and Image Understanding, 2020, 191(102866):1-16
[11] 老大中. 变分法基础(第3版). 北京:国防工业出版社, 2015(Lao D Z. Fundamentals of the Calculus of Variations (Third Edition)). Beijing:National Defense Industry Press, 2015)
[12] Eberly D. Thin-Plate Splines. Technical Report, Geometric Tools, LLC, 2020
[13] Maio D, Maltoni D, Cappelli R, Wayman J L, Jain A K. FVC2002:Second fingerprint verification competition Processdings of IEEE International Conference on Pattern Recognition, 2002, 811-814
[14] Mehmet K, Berkay T, Umut U. Standard fingerprint databases:Manual minutiae labeling and matcher performance analyses arXiv:1305.1443[cs.CV], 2013
[15] Maio D, Maltoni D, Cappelli R, Wayman J L, Jain A K. FVC2004:Third Fingerprint Verification Competition. International Conference on Biometric Authentication, 2004, 1-7
[16] 文成明. 指纹识别与基于匹配的特征提取算法研究. 中国科学院研究生院硕士学位论文, 2010(Wen C M. Algorithms of Fingerprint Recognition and Feature Extraction based on Matching. Master's Thesis of Graduate School of Chinese Academy of Sciences, 2010)
[17] Sandwell D T. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophysical Research Letters, 1987, 14(2):139-142

[1]姚旺进. 一类含有p-Laplacian算子的脉冲微分方程解的存在性和多重性[J]. 应用数学学报, 2021, 44(4): 532-541.
[2]梁海华, 王根强. 一类带非负系数矩阵的非线性代数系统的正解的存在性[J]. 应用数学学报, 2015, 38(1): 137-149.
[3]赵修文, 李一鸣, 舒级. 一类具非齐次项的非线性Schrödinger 方程驻波的稳定性[J]. 应用数学学报(英文版), 2010, 33(6): 1072-1077.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14932
相关话题/信息 北京 应用数学 图像 统计